Answer:
29.75 Kg of NH₃
Solution:
In order to calculate the theoretical yield, first we will identify the limiting reactant.
According to equation,
6 g (3 moles) H₂ requires = 28 g (1 mole) N₂
So,
5250 g H₂ will require = X g of N₂
Solving for X,
X = (5250 g × 28 g) ÷ 6 g
X = 25433 g of N₂
Hence, it is found that H₂ is the limiting reactant because N₂ is provided in excess (32700 g). Therefore,
As,
6 g (3 mole) H₂ produced = 34 g ( 2 moles) of NH₃
So,
5250 g H₂ will produce = X g of NH₃
Solving for X,
X = (5250 g × 34 g) ÷ 6 g
X = 29750 g of NH₃
Or,
X = 29.75 Kg of NH₃
Answer:
Mn
Explanation: 4th shell so 4th row and count 7 from the left most column
The greater amount is the solvent and the lesser amount is the solute.
Hence ethanol(200g) which is the greater amount is the solvent here.
And water (145g) which is lesser is the solute here.
Answer:
Metamorphism is the change of minerals or geologic texture (distinct arrangement of minerals) in pre-existing rocks (protoliths), without the protolith melting into liquid magma (a solid-state change). The change occurs primarily due to heat, pressure, and the introduction of chemically active fluids.
Explanation:
i hope this helps :)
Answer:
Explanation:
A student obtains a clean, dry graduated cylinder. She weighs the cylinder and finds the mass to be 32.64 g. She then fills the cylinder with a certain volume of water. She weighs the water-filled cylinder and finds the total mass to be 61.57 g. If the density of the water in the laboratory is 0.9975 g / mL , what is the volume of the water in the graduated cylinder?