Mass of PH3= 6.086 g
<h3>Further explanation</h3>
Given
6.0 L of H2
Required
mass of PH3
Solution
Reaction
P4 + 6H2 → 4PH3
Assumed at STP ( 1 mol gas=22.4 L)
Mol of H2 for 6 L :
= 6 : 22.4 L
= 0.268
From the equation, mol PH3 :
= 4/6 x moles H2
= 4/6 x 0.268
= 0.179
Mass PH3 :
= 0.179 x 33,99758 g/mol
= 6.086 g
I believe the answer is B. a million or more.
Explanation:
For the first part,
Reaction equation:
N₂ + 3H₂ → 2NH₃
Given:
Number of moles of NH₃ = 6 moles
Unknown:
Number of moles of N₂ = ?
Solution:
N₂ + 3H₂ → 2NH₃;
From the reaction above, we solve from the known specie to the unknown. Ensure that the equation is balanced;
2 moles of NH₃ is produced from 1 mole of N₂
6 moles of NH₃ will be produced from
mole of N₂
= 3moles of N₂
The number of moles of N₂ is 3 moles
ii.
Given parameters:
Number of moles of sulfur = 2.4moles
Molar mass of sulfur = 32.07g/mol
Unknown:
Mass of sulfur = ?
Solution:
The number of moles of any substance can be found using the expression below;
Number of moles = 
Mass of sulfur = number of moles of sulfur x molar mass
Insert the parameters and solve;
Mass of sulfur = 2.4 x 32.07 = 76.97g
Answer:
Q = 10.8 KJ
Explanation:
Given data:
Mass of Al= 100g
Initial temperature = 30°C
Final temperature = 150°C
Heat required = ?
Solution:
Specific heat of Al = 0.90 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 150°C - 30°C
ΔT = 120°C
Q = 100g×0.90 J/g.°C× 120°C
Q = 10800 J (10800j×1KJ/1000 j)
Q = 10.8 KJ