The full question asks to decide whether the gas was a specific gas. That part is missing in your question. You need to decide whether the gas in the flask is pure helium.
To decide it you can find the molar mass of the gas in the flask, using the ideal gas equation pV = nRT, and then compare with the molar mass of the He.
From pV = nRT you can find n, after that using the mass of gass in the flask you use MM = mass/moles.
1) From pV = nRT, n = pV / RT
Data:
V = 118 ml = 0.118 liter
R = 0.082 atm*liter/mol*K
p = 768 torr * 1 atm / 760 torr = 1.0105 atm
T = 35 + 273.15 = 308.15 K
n = 1.015 atm * 0.118 liter / [ 0.082 atm*liter/K*mol * 308.15K] =0.00472 mol
mass of gas = mass of the fask with the gas - mass of the flasl evacuated = 97.171 g - 97.129 g = 0.042
=> MM = mass/n = 0.042 / 0.00472 = 8.90 g/mol
Now from a periodic table or a table you get that the molar mass of He is 4g/mol
So the numbers say that this gas is not pure helium , because its molar mass is more than double of the molar mass of helium gas.
With a name like poly hydroxyl alcohol, it suggests that the alcohol has more than one alcohol group. Thus any alcohol with more than one hydroxyl is a polyhydroxyl alcohol. An example that pops into mind is ethanediol (CH2OHCH2OH) this has 2 hydroxyl groups and is an alcohol, thus a polyhydroxyl alcohol
Answer: is letter D. Because minerals are solid.
Explanation:
Explanation:
Mutations on DNA create genetic variation and diversity on which natural selection acts upon. Mutation can be advantageous, disadvantageous or neutral. Those mutations that confer advantage are preserved in the population while those that are DISadvantageous are weeded out. This occurs because advantageous traits that give a particular advantage to individuals in the environment, however slightest, give them an increased chance of survival and passing their genes to subsequent generations.
An example is mutation that causes sickle cell-shaped blood cells. Individuals with sickle cell blood are less likely to contract malaria. Therefore in an environment where malaria is endemic, the population will have a higher allele frequency for sickle cell alleles that populations in non-endemic areas.
Learn More:
For more on mutations check out;
brainly.com/question/11938701
brainly.com/question/13612138
#LearnWithBrainly