Answer:
Java is called portable because you can compile a java code which will spew out a byte-code, and then you run that code with Java Virtual Machine. Java Virtual Machine is like an interpreter, which reads the compiled byte-code and runs it. So first of all, you need to install the JVM on the system you want.
Explanation:
Answer:
b) False
Explanation:
in trapezoidal rule the error is proportional to
and the order of accuracy is proportional to
.
Trapezoidal rule is numerical integration method .Trapezoidal rule is used to find the area of curves.In trapezoidal rule we finds the approximate value of integration.But the real value of integration will not differ to much from the value which finds by using trapezoidal rule.
Answer:
D=41.48 ft
![a=54.43\ ft/s^2](https://tex.z-dn.net/?f=a%3D54.43%5C%20ft%2Fs%5E2)
Explanation:
Given that
y=0.5 x²
Vx= 2 t
We know that
![V_x=\dfrac{dx}{dt}](https://tex.z-dn.net/?f=V_x%3D%5Cdfrac%7Bdx%7D%7Bdt%7D)
At t= 0 ,x=0
![x=\int V_x.dt](https://tex.z-dn.net/?f=x%3D%5Cint%20V_x.dt)
At t= 3 s
![x=\int_{0}^{3} 2t.dt](https://tex.z-dn.net/?f=x%3D%5Cint_%7B0%7D%5E%7B3%7D%202t.dt)
![x=[t^2\left\right ]_0^3](https://tex.z-dn.net/?f=x%3D%5Bt%5E2%5Cleft%5Cright%20%5D_0%5E3)
x= 9 ft
When x= 9 ft then
y= 0.5 x 9² ft
y= 40.5 ft
So distance from origin is
x= 9 ft ,y= 40.5 ft
![D=\sqrt{9^2+40.5^2} \ ft](https://tex.z-dn.net/?f=D%3D%5Csqrt%7B9%5E2%2B40.5%5E2%7D%20%5C%20ft)
D=41.48 ft
![a_x=\dfrac{dV_x}{dt}](https://tex.z-dn.net/?f=a_x%3D%5Cdfrac%7BdV_x%7D%7Bdt%7D)
Vx= 2 t
![a_x= 2\ ft/s^2](https://tex.z-dn.net/?f=a_x%3D%202%5C%20ft%2Fs%5E2)
At t= 3 s , x= 9 ft
y=0.5 x²
![a_y=\dfrac{d^2y}{dt^2}](https://tex.z-dn.net/?f=a_y%3D%5Cdfrac%7Bd%5E2y%7D%7Bdt%5E2%7D)
y=0.5 x²
![\dfrac{dy}{dt}=x\dfrac{dx}{dt}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdy%7D%7Bdt%7D%3Dx%5Cdfrac%7Bdx%7D%7Bdt%7D)
![\dfrac{d^2y}{dt^2}=\left(\dfrac{dx}{dt}\right)^2+x\dfrac{d^2x}{dt^2}](https://tex.z-dn.net/?f=%5Cdfrac%7Bd%5E2y%7D%7Bdt%5E2%7D%3D%5Cleft%28%5Cdfrac%7Bdx%7D%7Bdt%7D%5Cright%29%5E2%2Bx%5Cdfrac%7Bd%5E2x%7D%7Bdt%5E2%7D)
Given that
![\dfrac{dx}{dt}=2t](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdt%7D%3D2t)
![\dfrac{dx}{dt}=2\times 3](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdt%7D%3D2%5Ctimes%203)
![\dfrac{dx}{dt}=6\ ft/s](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdt%7D%3D6%5C%20ft%2Fs)
![a_y=\dfrac{d^2y}{dt^2}=6^2+9\times 2\ ft/s^2](https://tex.z-dn.net/?f=a_y%3D%5Cdfrac%7Bd%5E2y%7D%7Bdt%5E2%7D%3D6%5E2%2B9%5Ctimes%202%5C%20ft%2Fs%5E2)
![a_y=54\ ft/s^2](https://tex.z-dn.net/?f=a_y%3D54%5C%20ft%2Fs%5E2)
![a=\sqrt{a_x^2+a_y^2}\ ft/s^2](https://tex.z-dn.net/?f=a%3D%5Csqrt%7Ba_x%5E2%2Ba_y%5E2%7D%5C%20ft%2Fs%5E2)
![a=\sqrt{2^2+54^2}\ ft/s^2](https://tex.z-dn.net/?f=a%3D%5Csqrt%7B2%5E2%2B54%5E2%7D%5C%20ft%2Fs%5E2)
![a=54.43\ ft/s^2](https://tex.z-dn.net/?f=a%3D54.43%5C%20ft%2Fs%5E2)