1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mezya [45]
4 years ago
7

Engine oil flows through a 25‐mm‐diameter tube at a rate of 0.5 kg/s. The oil enters the tube at a temperature of 25°C, while th

e tube surface temperature is maintained at 100°C. For a 100‐m long tube, solve for a) the log mean temperature difference (Approx. 64.5 deg C), and b) the rate of heat addition into the oil.

Engineering
1 answer:
Elodia [21]4 years ago
3 0

Answer:

a) the log mean temperature difference (Approx. 64.5 deg C)

b) the rate of heat addition into the oil.

The above have been solved for in the below workings

Explanation:

You might be interested in
If f(
EastWind [94]
Can you retype this in for me so I can do it cause it’s lined up instead of horizontal
8 0
3 years ago
1. A cylindrical casting is 0.3 m in diameter and 0.5 m in length. Another casting has the same metal is rectangular in cross-se
Lorico [155]

Based on the Chvorinov's rule, the diference in the <em>solidification</em> times of the two castings is 14.092 times the <em>solidification</em> time of the prism casting.

<h3>How to apply the Chvorinov's rule for casting processes</h3>

The Chvorinov's rule is an empirical method to estimate the cooling time of a casting in terms of a <em>reference</em> time. This rule states that cooling time (<em>t</em>) is directly proportional to the square of the volume (<em>V</em>), in cubic meters, divided to the surface area (<em>A</em>), in square meters. Now we proceed to model each casting:

<h3>Cylindrical casting</h3>

t = C · [0.25π · D² · L/(0.5π · D² + π · D · L)]²

t = C · [0.25 · D · L/(0.5 · D + L)]²    (1)

<h3>Prism casting</h3>

t' = C · [3 · T² · L/(6 · T · L + 2 · T · L + 6 · T²)]²

t' = C · [3 · T · L/(8 · L + 6 · T)]²     (2)

<h3>Relationship between the cross sections of both castings</h3>

3 · T² = 0.25π · D²     (3)

Where:

  • <em>t</em> - Cooling time of the cylindrical casting, in time unit.
  • <em>t'</em> - Cooling time of the prism casting, in time unit.
  • <em>C</em> - Cooling factor, in time unit per square meter.
  • <em>D</em> - Diameter of the cylinder, in meters.
  • <em>L</em> - Length of the casting, in meters.
  • <em>T</em> - Width of the cross section of the prism casting, in meters.

If we know that <em>D =</em> <em>0.3 m</em>, then the thickness of the prism casting is:

T = \sqrt{\frac{\pi}{12} }\cdot D

<em>T ≈ 0.153 m</em>

<em />

And (1) and (2) simplified into these forms:

<h3>Cylindrical casting</h3>

t = C · {0.25π · (0.3 m) · (0.5 m)/[0.5 · (0.3 m) + 0.5 m]}²

t = 0.0329 · C     (1b)

<h3>Prism casting</h3>

t' = C · {3 · (0.153 m) · (0.5 m)/[8 · (0.5 m) + 6 · (0.153 m)]}²

t' = 0.00218 · C     (2b)

Lastly we find the <em>percentual</em> difference in the solidification times of the two castings by using the following expression:

<em>r = (</em>1 <em>- t'/t) ×</em> 100 %

<em>r = (</em>1 <em>-</em> 0.00218<em>/</em>0.0329<em>) ×</em> 100 %

<em>r =</em> 93.374 %

The <em>cooling</em> time of the <em>prism</em> casting is 6.626 % of the <em>solidification</em> time of the <em>cylindrical</em> casting. The diference in the <em>solidification</em> times of the two castings is 14.092 times the <em>solidification</em> time of the <em>prism</em> casting. \blacksquare

To learn more on solidification times, we kindly invite to check this verified question: brainly.com/question/13536247

3 0
3 years ago
Find the time-domain sinusoid for the following phasors:_________
sattari [20]

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

3 0
3 years ago
Reference sources reveal that a workpiece material has a unit horsepower of 1.6 hp/in3/min. For a turning operation, the cutting
Troyanec [42]

The question is incomplete. We have to calculate :

a). the cutting force

b). volumetric metal removal rate, MRR

c). the horsepower required at the cut

d). if the power efficiency of the machine tool is 90%, determine the motor horsepower

Solution :

Given :

Cutting velocity (v) = 500 ft/min

                               = 500 x 12 in/min

                               = 6000 in/min

Feed , f = 0.025 in/rev

Depth of cut, d = 0.2 in

b). Volumetric material removal rate, MRR = v.f.d

                                                                      = 6000 x 0.025 x 0.2

                                                                      = 30 $in^3 / min$

c). Horsepower required = MRR x unit horsepower

                                         = 30 x 1.6

                                         = 48 hp

a). Cutting force,

$F=\frac{power}{cuting \ velocity}$

    $=\frac{48 \times 550}{500 /60}$                (1 hp = 550 ft lbf /sec)

   = 3168 lbf

d). Machine HP required

  $=\frac{HP}{\eta}$

 $=\frac{48}{0.9}$

= 53.33 HP

6 0
3 years ago
2. It is a measuring instrument used to record the amount of
lyudmila [28]

Answer:

The correct option is;

D. Electric meter

Explanation:

An electric meter is a metering device that is used for the measurement of the electric power consumption of an electrical powered tools, a living space or a building

Electric meter readings are used by electric utility company to sell electric power to consumers at a given rate such that it allows the electric utility company to receive payment for the total power supplied, and for the consumer to regulate the amount of power consumed

The electric meters are usually calibrated in kilowatt hour (kWh) and prepaid meter displays the amount of units of power bought, while post paid meters are usually read once each billing period which is usually one month.

3 0
3 years ago
Other questions:
  • Andy has applied for a NICET
    12·1 answer
  • A slight breeze is blowing over the hot tub above and yields a heat transfer coefficient h of 20 W/m2 -K. The air temperature is
    15·1 answer
  • Which term defines the amount of mechanical work an engine can do per unit of heat energy it uses?
    6·1 answer
  • Technician A says that a seal can be pried out of a bore using a sharp chisel. Technician B says that smaller metal-backed seals
    7·2 answers
  • What is the average linear (seepage) velocity of water in an aquifer with a hydraulic conductivity of 6.9 x 10-4 m/s and porosit
    13·1 answer
  • 2- A 2-m3 insulated tank containing ammonia at -20 C, 80% quality, is connected by a valve to a line flowing ammonia at 2 MPa, 6
    14·1 answer
  • Joinn my zo om lets play some blookets<br> 98867 708157<br> 9dPQPW
    14·1 answer
  • Which of the following best describes the basic purpose of the internet?
    7·2 answers
  • I gave 15 min to finish this java program
    5·1 answer
  • Engineering includes making things that already exist, except making them better. * true or false
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!