Answer:
h = 287.1 m
Explanation:
the density of mercury \rho =13570 kg/m3
the atmospheric pressure at the top of the building is

the atmospheric pressure at bottom


we have also

1.18*9.81*h = (100.4 -97.08)*10^3
h = 287.1 m
Answer:
Q=36444.11 Btu
Explanation:
Given that
Initial temperature = 60° F
Final temperature = 110° F
Specific heat of water = 0.999 Btu/lbm.R
Volume of water = 90 gallon
Mass = Volume x density

Mass ,m= 90 x 0.13 x 62.36 lbm
m=729.62 lbm
We know that sensible heat given as
Q= m Cp ΔT
Now by putting the values
Q= 729.62 x 0.999 x (110-60) Btu
Q=36444.11 Btu
Answer:
peak flow and any engineering considerations related thereto
Explanation:
It should be no surprise that a peak flow meter will report peak flow, sometimes with important maximum-value, time-constant, or bandwidth limitations. There are many engineering issues related to flow rates. A peak flow meter can allow you to assess those issues with respect to the flows actually encountered.
Peak flow can allow you to assess adequacy of flow and whether there may be blockages or impediments to flow that reduce peak levels below expected values. An appropriate peak flow meter can help you assess the length of time that peak flow can be maintained, and whether that delivers sufficient volume.
It can also allow you to assess whether appropriate accommodation is made for unexpectedly high flow rates. (Are buffers or overflow tanks of sufficient size? Is there adequate protection against possible erosion? Is there adequate support where flow changes direction?)
Answer: True
Explanation:
Permanent molds do not collapse, unlike expendable molds so the mold must be opened before appreciable cooling contraction occurs in order to prevent cracks from developing in the casting.
The metal casting becomes solid inside the mold after it has been poured. But during the process of manufacture, before the would cools any further, they usually remove the metal cast in order to stop excess contractions of the solid metal casting in the mold. This is done to prevent prevent cracks from developing in the casting since permanent mold do not collapse.
Answer: $17,206.13
Explanation:
Hi, to answer this question we have to apply the next formula:
Annual electricity cost = (P x 0.746 x Ckwh x h) /η
P = compressor power = 78 hp
0.746 kw/hp= constant (conversion to kw)
Ckwh = Cost per kilowatt hour = $0.11/kWh
h = operating hours per year = 2500 h
η = efficiency = 93% = 0.93 (decimal form)
Replacing with the values given :
C = ( 78 hp x 0.746 kw/hp x 0.11 $/kwh x 2500 h ) / 0.93 = $17,206.13