1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mezya [45]
4 years ago
7

Engine oil flows through a 25‐mm‐diameter tube at a rate of 0.5 kg/s. The oil enters the tube at a temperature of 25°C, while th

e tube surface temperature is maintained at 100°C. For a 100‐m long tube, solve for a) the log mean temperature difference (Approx. 64.5 deg C), and b) the rate of heat addition into the oil.

Engineering
1 answer:
Elodia [21]4 years ago
3 0

Answer:

a) the log mean temperature difference (Approx. 64.5 deg C)

b) the rate of heat addition into the oil.

The above have been solved for in the below workings

Explanation:

You might be interested in
The basic barometer can be used to measure the height of a building. If the barometric readings at the top and at the bottom of
bixtya [17]

Answer:

h = 287.1 m

Explanation:

the density of mercury \rho =13570 kg/m3

the atmospheric pressure at the top of the building is

p_t = \rho gh  = 13570*908*0.73 = 97.08 kPa

the atmospheric pressure at bottom

p_b = \rho gh  = 13570*908*0.75 = 100.4 kPa

\frac{w_{air}}{A} =p_b -p_t

we have also

(\rho gh)_{air} = p_b - p_t

1.18*9.81*h = (100.4 -97.08)*10^3

h = 287.1 m

7 0
3 years ago
Ignoring any losses, estimate how much energy (in units of Btu) is required to raise the temperature of water in a 90-gallon hot
Rudik [331]

Answer:

Q=36444.11 Btu

Explanation:

Given that

Initial temperature = 60° F

Final temperature = 110° F

Specific heat of water = 0.999 Btu/lbm.R

Volume of water = 90 gallon

Mass = Volume x density

1\ gallon = 0.13ft^3

Mass ,m= 90 x 0.13 x 62.36 lbm

m=729.62 lbm

We know that sensible heat given as

Q= m Cp ΔT

Now by putting the values

Q= 729.62 x 0.999 x (110-60) Btu

Q=36444.11 Btu

5 0
3 years ago
What does a peak flow meter allow you to assess?
Alex Ar [27]

Answer:

  peak flow and any engineering considerations related thereto

Explanation:

It should be no surprise that a peak flow meter will report peak flow, sometimes with important maximum-value, time-constant, or bandwidth limitations. There are many engineering issues related to flow rates. A peak flow meter can allow you to assess those issues with respect to the flows actually encountered.

Peak flow can allow you to assess adequacy of flow and whether there may be blockages or impediments to flow that reduce peak levels below expected values. An appropriate peak flow meter can help you assess the length of time that peak flow can be maintained, and whether that delivers sufficient volume.

It can also allow you to assess whether appropriate accommodation is made for unexpectedly high flow rates. (Are buffers or overflow tanks of sufficient size? Is there adequate protection against possible erosion? Is there adequate support where flow changes direction?)

3 0
3 years ago
Unlike expendable molds, permanent molds do not collapse, so the mold must be opened before appreciable cooling contraction occu
Pani-rosa [81]

Answer: True

Explanation:

Permanent molds do not collapse, unlike expendable molds so the mold must be opened before appreciable cooling contraction occurs in order to prevent cracks from developing in the casting.

The metal casting becomes solid inside the mold after it has been poured. But during the process of manufacture, before the would cools any further, they usually remove the metal cast in order to stop excess contractions of the solid metal casting in the mold. This is done to prevent prevent cracks from developing in the casting since permanent mold do not collapse.

8 0
3 years ago
A(n) 78-hp compressor in a facility that operates at full load for 2500 h a year is powered by an electric motor that has an eff
Jet001 [13]

Answer: $17,206.13

Explanation:

Hi, to answer this question we have to apply the next formula:  

Annual electricity cost = (P x 0.746 x Ckwh x h) /η  

P = compressor power = 78 hp  

0.746 kw/hp= constant (conversion to kw)

Ckwh = Cost per kilowatt hour = $0.11/kWh  

h = operating hours per year = 2500 h  

η = efficiency = 93% = 0.93 (decimal form)  

Replacing with the values given :  

C = ( 78 hp x 0.746 kw/hp x 0.11 $/kwh x 2500 h ) / 0.93 = $17,206.13  

5 0
3 years ago
Other questions:
  • A tank contains liquid nitrogen at -190℃ is suspended in a vacuum shell by three stainless steel rods 0.80 cm in diameter and 3
    8·1 answer
  • in a vehicle you're servicing the fuel pressure drops rapidly when the engine is says that one or more turned off. Technician a
    7·1 answer
  • Bulk wind shear is calculated by finding the vector difference between the winds at two different heights. Using the supercell w
    12·1 answer
  • A steel wire of diameter 2.000 mm and length 1.000 m is attached between two immovable supports.When the temperature is 60.00 Ce
    9·1 answer
  • What does it mean when it says technology is A dynamic process
    7·1 answer
  • A 24-tooth gear has AGMA standard full-depth involute teeth with diametral pitch of 12. Calculate the pitch diameter, circular p
    5·2 answers
  • 4. Which of the following is the first thing you should do when attempting
    13·2 answers
  • A slab-milling operation is performed on a 0.7 m long, 30 mm-wide cast-iron block with a feed of 0.25 mm/tooth and depth of cut
    14·1 answer
  • prove that the heat transfer at the constant pressure is given by the enthalpy change during the process​
    7·1 answer
  • Why do giant stars become planetary nebulas while supergiant stars become supernovas when their nuclear fusion slows and is over
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!