Answer:
Heat required =7126.58 Btu.
Explanation:
Given that
Mass m=20 lb
We know that
1 lb =0.45 kg
So 20 lb=9 kg
m=9 kg
Ice at -15° F and we have to covert it at 200° F.
First ice will take sensible heat at up to 32 F then it will take latent heat at constant temperature and temperature will remain 32 F.After that it will convert in water and water will take sensible heat and reach at 200 F.
We know that
Specific heat for ice
Latent heat for ice H=336 KJ/kg
Specific heat for ice
We know that sensible heat given as
Heat for -15F to 32 F:
Q=858.69 KJ
Heat for 32 Fto 200 F:
Q=6330.74 KJ
Total heat=858.69 + 336 +6330.74 KJ
Total heat=7525.43 KJ
We know that 1 KJ=0.947 Btu
So 7525.43 KJ=7126.58 Btu
So heat required to covert ice into water is 7126.58 Btu.
Answer:
450,000m = 450km = 4.5E5
32,600,000W = 32.6MW = 3.26E7
59,700,000,000cal = 59.7Gcal = 5.97E10
0.000000083s = 83ns = 8.3E-8
35,000Ω = 35kΩ = 3.5E4
Explanation:
Giga = 1,000,000,000
Mega = 1,000,000
kilo = 1,000
unit = 1
deci = .1
centi = .01
milli = .001
micro = .000001
nano = .0000000001
pico = .000000000001
You should be able to look at these and convert between them in seconds if you want to pursue anything in engineering.
Answer:
The power developed in HP is 2702.7hp
Explanation:
Given details.
P1 = 150 lbf/in^2,
T1 = 1400°R
P2 = 14.8 lbf/in^2,
T2 = 700°R
Mass flow rate m1 = m2 = m = 11 lb/s Q = -65000 Btu/h
Using air table to obtain the values for h1 and h2 at T1 and T2
h1 at T1 = 1400°R = 342.9 Btu/h
h2 at T2 = 700°R = 167.6 Btu/h
Using;
Q - W + m(h1) - m(h2) = 0
W = Q - m (h2 -h1)
W = (-65000 Btu/h ) - 11 lb/s (167.6 - 342.9) Btu/h
W = (-65000 Btu/h ) - (-1928.3) Btu/s
W = (-65000 Btu/h ) * {1hr/(60*60)s} - (-1928.3) Btu/s
W = -18.06Btu/s + 1928.3 Btu/s
W = 1910.24Btu/s
Note; Btu/s = 1.4148532hp
W = 2702.7hp
Answer:
Explanation:
Thermostatic expansion valve is mainly a throttling device commonly used in air conditioning systems and refrigerators.
It is an automatic valve that maintains proper flow of refrigerant in the evaporator according to the load inside the evaporator. When the load in the evaporator is higher the valve opens and allows the increase in flow of refrigerant and when the load reduces the valve closes a bit and reduces the flow of refrigerant. This process leads to higher efficiency of compressor as well as the whole refrigeration system. Thus TEV works to reduce the pressure of refrigerant from higher condenser pressure to the lower evaporator pressure. It also keeps the evaporator active.