1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
astraxan [27]
3 years ago
6

A(n)______ is a device used to ensure positive position of a valve or damper actuator A. calibrator B. positioner C. actuator D.

characteristic cam
Engineering
1 answer:
zlopas [31]3 years ago
4 0

Answer: C) actuator

Explanation:

Actuator is the device that used to provides the power and manipulate the motion of the moving parts of the valve and damper is used to control the flow of the fluid. Actuator is the device or the mechanism which are used to control valve automatically and valve is a device which is used to control and regulate the fluid by rotating the flow.

You might be interested in
A pin must be inserted into a collar of the same steel using an expansion fit. The coefficient of thermal expansion of the metal
nirvana33 [79]

Answer:

a)  the temperature to which the pin must be cooled for assembly is T_2 = -101.89^ \ ^0}C

b) the radial pressure at room temperature after assembly is P_f = 62.8 \ MPa

c) the  safety factor in the resulting assembly = 6.4

Explanation:

Coefficient of thermal expansion \alpha = 12.3*10^{-6} \  ^0 C

Yield strength \sigma_y = 400 MPa

Modulus of elasticity (E) = 209 GPa

Room Temperature T_1 = 20°C

outer diameter of the collar D_o = 95 \ mm

inner diameter of the collarD_i = 60 \ mm

pin diameter D_p = 60.03 \ mm

Clearance c = 0.06 mm

a)

The temperature to which the pin must be cooled for assembly can be calculated by using the formula:

(D_i - c )-D_p = \alpha * D_p(T_2-T_1)

(60-0.06)-60.03=12.3*10^{-6}*60.03(T_{2}-20^{0}C)

-0.09 = 7.38369*10^{-4}(T_{2}-20^{0}C)

-0.09 = 7.38369*10^{-4}T_2  \ \ - \ \ 0.01476738

-0.09 +  0.01476738 = 7.38369*10^{-4}T_2

−0.07523262 =7.38369*10^{-4}T_2

T_2 = \frac{-0.07523262}{7.38369*10^{-4}}

T_2 = -101.89^ \ ^0}C

b)

To determine the radial pressure at room temperature after assembly ;we have:

P_f = \frac{E * (D_p-D_i)(D_o^2-D_1^2)}{D_i*D_o} \\ \\ \\  P_f = \frac{209*10^9* 0.03(95^2-60^2)}{60*95^2}  \\ \\ P_f = 62815789.47 \ Pa \\ \\ P_f = 62.8 \ MPa

c)  the safety factor of the resulting assembly is calculated as:

safety factor =  \frac{Yield \ strength }{walking \ stress}

safety factor =  \frac{400}{62.8}

safety factor = 6.4

Thus, the  safety factor in the resulting assembly = 6.4

4 0
3 years ago
Since 1990, hand-held mobile phones have been used as communication devices. Mobile phones have gone through a lot of design cha
Alexxx [7]

Answer: IMPACT: Access to the mobile web was a major improvement for cell phones in the 1990s. With 2G (digital cellular networks), came the ability to access media content and the World Wide Web on cell phones.

Explanation:

8 0
3 years ago
Select the correct answer.
scoundrel [369]
A is your answer choice
8 0
3 years ago
). A 50 mm diameter cylinder is subjected to an axial compressive load of 80 kN. The cylinder is partially
Delicious77 [7]

Answer:

\frac{e'_z}{e_z} = 0.87142

Explanation:

Given:-

- The diameter of the cylinder, d = 50 mm.

- The compressive load, F = 80 KN.

Solution:-

- We will form a 3-dimensional coordinate system. The z-direction is along the axial load, and x-y plane is categorized by lateral direction.

- Next we will write down principal strains ( εx, εy, εz ) in all three directions in terms of corresponding stresses ( σx, σy, σz ). The stress-strain relationships will be used for anisotropic material with poisson ratio ( ν ).

                          εx = - [ σx - ν( σy + σz ) ] / E

                          εy = - [ σy - ν( σx + σz ) ] / E

                          εz = - [ σz - ν( σy + σx ) ] / E

- First we will investigate the "no-restraint" case. That is cylinder to expand in lateral direction as usual and contract in compressive load direction. The stresses in the x-y plane are zero because there is " no-restraint" and the lateral expansion occurs only due to compressive load in axial direction. So σy= σx = 0, the 3-D stress - strain relationships can be simplified to:

                          εx =  [ ν*σz ] / E

                          εy = [ ν*σz ] / E

                          εz = - [ σz ] / E   .... Eq 1

- The "restraint" case is a bit tricky in the sense, that first: There is a restriction in the lateral expansion. Second: The restriction is partial in nature, such, that lateral expansion is not completely restrained but reduced to half.

- We will use the strains ( simplified expressions ) evaluated in " no-restraint case " and half them. So the new lateral strains ( εx', εy' ) would be:

                         εx' = - [ σx' - ν( σy' + σz ) ] / E = 0.5*εx

                         εx' = - [ σx' - ν( σy' + σz ) ] / E =  [ ν*σz ] / 2E

                         εy' = - [ σy' - ν( σx' + σz ) ] / E = 0.5*εy

                         εx' = - [ σy' - ν( σx' + σz ) ] / E =  [ ν*σz ] / 2E

- Now, we need to visualize the "enclosure". We see that the entire x-y plane and family of planes parallel to ( z = 0 - plane ) are enclosed by the well-fitted casing. However, the axial direction is free! So, in other words the reduction in lateral expansion has to be compensated by the axial direction. And that compensatory effect is governed by induced compressive stresses ( σx', σy' ) by the fitting on the cylinderical surface.

- We will use the relationhsips developed above and determine the induced compressive stresses ( σx', σy' ).

Note:  σx' = σy', The cylinder is radially enclosed around the entire surface.

Therefore,

                        - [ σx' - ν( σx'+ σz ) ] =  [ ν*σz ] / 2

                          σx' ( 1 - v ) = [ ν*σz ] / 2

                          σx' = σy' = [ ν*σz ] / [ 2*( 1 - v ) ]

- Now use the induced stresses in ( x-y ) plane and determine the new axial strain ( εz' ):

                           εz' = - [ σz - ν( σy' + σx' ) ] / E

                           εz' = - { σz - [ ν^2*σz ] / [ 1 - v ] } / E

                          εz' = - σz*{ 1 - [ ν^2 ] / [ 1 - v ] } / E  ... Eq2

- Now take the ratio of the axial strains determined in the second case ( Eq2 ) to the first case ( Eq1 ) as follows:

                            \frac{e'_z}{e_z} = \frac{- \frac{s_z}{E} * [ 1 - \frac{v^2}{1 - v} ]  }{-\frac{s_z}{E}}  \\\\\frac{e'_z}{e_z} = [ 1 - \frac{v^2}{1 - v} ] = [ 1 - \frac{0.3^2}{1 - 0.3} ] \\\\\frac{e'_z}{e_z} = 0.87142... Answer

5 0
3 years ago
Please help i am give brainliest i really need help guys no links please ???
devlian [24]

Explanation:

The wind is an actual form of solar energy. winds are caused by the heating of the atmosphere by the sun, the rotation of the earth, and the earth's surface irregularities. The wind is capture in a wind turbine which provides a renewable energy source, the wind makes the rotor spin, as the rotor spins the movement of the blades drives a generator that creates energy, also known as wind power. The average wind efficiency of turbines is between 35-45%.

Advantages of wind power

- Wind power is cost-effective

- wind creates jobs

- wind enables US industry growth and US competitiveness

-it's a clean fuel source

   

4 0
3 years ago
Other questions:
  • How does a vacuum carpet cleaner work?
    10·2 answers
  • Use a passband of 0 to 5 kHz with 5 kHz cutoff frequency and filter to attenuate all frequencies at and above 10 kHz by at least
    8·1 answer
  • Write a single statement to print: user_word,user_number. Note that there is no space between the comma and user_number. Sample
    7·1 answer
  • There is no charge at the upper terminal of the ele- ment in Fig. 1.5 for t 6 0. At t = 0 a current of 125e-2500t mA enters the
    11·1 answer
  • List two reasons why machined parts often require a high degree of precision.
    8·1 answer
  • Describe the are of mechanical engineering
    6·2 answers
  • Tin atoms are introduced into an FCC copper ,producing an alloy with a lattice parameter of 4.7589×10-8cm and a density of 8.772
    9·1 answer
  • a poorly tighten terminal is often the cause of a/an ? a) open circuit b) circuit breaker interrupt c)short circuit d) ground fa
    10·1 answer
  • 8- Concentration polarization occurs on the surface of the.......
    15·1 answer
  • Safety measures to be taken during technical drawing<br>​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!