Answer: Option D) 298 g/mol is the correct answer
Explanation:
Given that;
Mass of sample m = 13.7 g
pressure P = 2.01 atm
Volume V = 0.750 L
Temperature T = 399 K
Now taking a look at the ideal gas equation
PV = nRT
we solve for n
n = PV/RT
now we substitute
n = (2.01 atm x 0.750 L) / (0.0821 L-atm/mol-K x 399 K
)
= 1.5075 / 32.7579
= 0.04601 mol
we know that
molar mass of the compound = mass / moles
so
Molar Mass = 13.7 g / 0.04601 mol
= 297.7 g/mol ≈ 298 g/mol
Therefore Option D) 298 g/mol is the correct answer
I really don’t know good luck
Answer:
Explanation:
Given
charge is placed at 
another charge of
is at 
We know that Electric field due to positive charge is away from it and Electric field due to negative charge is towards it.
so net electric field is zero somewhere beyond negatively charged particle
Electric Field due to
at some distance r from it

Now Electric Field due to
is

Now 



thus 
Thus Electric field is zero at some distance r=1.43 cm right of
Answer:
ideal fluid follow Newtonian law
that is, shear stress is directly proportional to rate change of shear strain.
watch handwritten explanation