1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KiRa [710]
3 years ago
9

6 A square silicon chip (k 150 W/m K) is of width w 5 mm on a side and of thickness t 1 mm. The chip is mounted in a substrate s

uch that its side and back surfaces are insulated, while the front surface is exposed to a coolant. If 4 W are being dissipated in circuits mounted to the back surface of the chip, what is the steady-state temperature difference between back and front surfaces
Engineering
1 answer:
bezimeni [28]3 years ago
5 0

Answer:

1.1⁰C

Explanation:

Width W = 5mm = 0.005

Thickness t = 1 mm = 0.001

K = thermal conductivity = 150W/m.K

P = q = heat transfer rate = 4W

We are to find the steady state temperature between the back and the front surface

We have to make these assumptions:

1. There is steady state conduction

2. The heat flow is of one dimension

3. The thermal conductivity is constant

4. The heat dissipation is uniform

We have:

∆t = t*P/k*W²

= (0.001m x 4W)/150x(0.005)²

= 0.004/0.00375

= 1.06667

This is approximately,

1.1⁰C

Thank you!

You might be interested in
Water flows steadily through the pipe as shown below, such that the pressure at section (1) and at section (2) are 300 kPa and 1
steposvetlana [31]

Answer:

The velocity at section is approximately 42.2 m/s

Explanation:

For the water flowing through the pipe, we have;

The pressure at section (1), P₁ = 300 kPa

The pressure at section (2), P₂ = 100 kPa

The diameter at section (1), D₁ = 0.1 m

The height of section (1) above section (2), D₂ = 50 m

The velocity at section (1), v₁ = 20 m/s

Let 'v₂' represent the velocity at section (2)

According to Bernoulli's equation, we have;

z_1 + \dfrac{P_1}{\rho \cdot g} + \dfrac{v^2_1}{2 \cdot g} = z_2 + \dfrac{P_2}{\rho \cdot g} + \dfrac{v^2_2}{2 \cdot g}

Where;

ρ = The density of water = 997 kg/m³

g = The acceleration due to gravity = 9.8 m/s²

z₁ = 50 m

z₂ = The reference = 0 m

By plugging in the values, we have;

50 \, m + \dfrac{300 \ kPa}{997 \, kg/m^3 \times 9.8 \, m/s^2} + \dfrac{(20 \, m/s)^2}{2 \times 9.8 \, m/s^2} = \dfrac{100 \ kPa}{997 \, kg/m^3 \times 9.8 \, m/s^2} + \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}50 m + 30.704358 m + 20.4081633 m = 10.234786 m + \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

50 m + 30.704358 m + 20.4081633 m - 10.234786 m = \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

90.8777353 m = \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

v₂² = 2 × 9.8 m/s² × 90.8777353 m

v₂² = 1,781.20361 m²/s²

v₂ = √(1,781.20361 m²/s²) ≈ 42.204308 m/s

The velocity at section (2), v₂ ≈ 42.2 m/s

3 0
3 years ago
A seamless pipe 800mm diameter contains a fluid under a pressure of 2N/mm2. If the permissible tensile stress is 100N/mm2, find
Bad White [126]

Answer:

8 mm

Explanation:

Given:

Diameter, D = 800 mm

Pressure, P = 2 N/mm²

Permissible tensile stress, σ = 100 N/mm²

Now,

for the pipes, we have the relation as:

\sigma=\frac{\textup{PD}}{\textup{2t}}

where, t is the thickness

on substituting the respective values, we get

100=\frac{\textup{2\times800}}{\textup{2t}}

or

t = 8 mm

Hence, the minimum thickness of pipe is 8 mm

3 0
3 years ago
1. A 260 ft (79.25 m) length of size 4 AWG uncoated copper wire operating at a tem-
Murljashka [212]

A 260 ft (79.25m) length of size 4 AWG uncoated copper wire operating at a temperature of 75°c has a resistance of 0.0792 ohm.

Explanation:

From the given data the area of size 4 AWG of the code is 21.2 mm², then K is the Resistivity of the material at 75°c is taken as ( 0.0214 ohm mm²/m ).

To find the resistance of 260 ft (79.25 m) of size 4 AWG,

R= K * L/ A

K = 0.0214 ohm mm²/m

L = 79.25 m

A = 21.2 mm²

R = 0.0214 * \frac{79.25}{21.2}

  = 0.0214 * 3.738

  = 0.0792 ohm.

Thus the resistance of uncoated copper wire is 0.0792 ohm

5 0
4 years ago
One method that is used to grow nanowires (nanotubes with solid cores) is to initially deposit a small droplet of a liquid catal
7nadin3 [17]

Answer: maximum length of the nanowire is 510 nm

Explanation:

 

From the table of 'Thermo physical properties of selected nonmetallic solids at At T = 1500 K

Thermal conductivity of silicon carbide k = 30 W/m.K

Diameter of silicon carbide nanowire, D = 15 x 10⁻⁹ m  

lets consider the equation for the value of m

m = ( (hP/kAc)^1/2 )  = ( (4h/kD)^1/2 )  

m =  ( ((4 × 10⁵)/(30×15×10⁻⁹ ))^1/2 ) = 942809.04    

now lets find the value of h/mk    

h/mk = 10⁵ / ( 942809.04 × 30) =  0.00353

lets consider the value θ/θb by using the equation

θ/θb = (T - T∞) / (T - T∞)

θ/θb =  (3000 - 8000) / (2400 - 8000)

= 0.893

the temperature distribution at steady-state is expressed as;

θ/θb = [ cosh m(L - x) + ( h/mk) sinh m (L - x)]   / [cosh mL+  (h/mk) sinh mL]

θ/θb = [ cosh m(L - L) + ( h/mk) sinh m (L - L)]   / [cosh mL+  (h/mk) sinh mL]

θ/θb = [ 1 ]  / [cosh mL+  (h/mk) sinh mL]

so we substitute

0.893 =  [ 1 ]  / [cosh (942809.04 × L) +  (0.00353) sinh (942809.04 × L)]

L = 510 × 10⁻⁹m

L = 510 nm

therefore maximum length of the nanowire is 510 nm

4 0
3 years ago
Three groups of students are given study outlines for 6 weeks. One group studies 2 hours a night, a second group studies 1 hour
katrin2010 [14]

Answer:

The constant here is the study outline

Explanation:

In scientific research, the constant variable is that part/variable of the experiment that does not change or is set not to change. Examples include temperature, environment or height.

Assuming the scenery described in this question is an experiment. All the groups presented are bound by a constant during the experiment. The constant here is the study outline. The study outline provided to the students is not going to change.

NOTE: There could be confusion as regards the answer being the final exam grade but that will be the dependent variable as that will be the outcome of the experiment while the time spent to study will be the independent variable.

8 0
3 years ago
Other questions:
  • Suppose an underground storage tank has been leaking for many years, contaminating a groundwater and causing a contaminant conce
    8·1 answer
  • Consider a very long, cylindrical fin. The temperature of the fin at the tip and base are 25 °C and 50 °C, respectively. The dia
    14·1 answer
  • For methyl chloride at 100°C the second and third virial coefficients are: B = −242.5 cm 3 ·mol −1 C = 25,200 cm 6 ·mol −2 Calcu
    7·1 answer
  • The W16x50, steel beam below has a span of 26' and is subjected to a 2.3 k/ft uniform distributed loading. If a 8 kip load is al
    8·1 answer
  • THIS IS NOT AN ACADEMIC QUESTION, but who was the bitter of 1987 in FNAF?
    6·2 answers
  • Three spheres are subjected to a hydraulic stress. The pressure on spheres 1 and 2 is the same, and they are made of the same ma
    8·1 answer
  • Determine (with justification) whether the following systems are (i) memoryless, (ii) causal, (iii) invertible, (iv) stable, and
    10·1 answer
  • A___ remote control can be an advantage to an
    14·2 answers
  • Select the correct answer.
    11·1 answer
  • All of the dimensions on an aircraft drawing are_________<br> to the bottom of the drawing.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!