Answer:
1. The elephant has more kinetic energy at this speed and mass. It has 4,500 J more KE.
2. The elephant would have to go at a speed of 2.5 m/s to reach the same KE as the cheetah.
Explanation:
You would use the formula KE=1/2mv^2.
This formula would be filled in and completed twice, once for the elephant and once for the cheetah.
Cheetah:
KE = 1/2 (40) (25) ^2
KE = 12,500 J
Elephant:
KE = 1/2 (4,000) (2) ^2
KE = 8,000 J
This shows that the cheetah has more KE.
Then you would subtract the elephants amount of J from the cheetahs to find the difference.
Difference = 12,500 J - 8,000 J
Difference = 4,500 J
I hoped this helped with the first part :)
For the second part:
To find the speed the elephant would have to run you would fill in and complete the equation once more with different distance results.
KE = 1/2 (4,000) (2.5) ^2
KE= 12,500 J
Explanation:
i1=1ampere
i1+i2=I
VA−VB=i1×3Ω=i2×6
⇒1×3=i2×6
2i=21ampere
Hence I=i1+i2=1+0.5=1.5ampere
Req=2+3+63×6=2+93×6=4Ω
equivalent circuit
Refer image .2
From KVL
1req=v
v=1.5×4
Answer: 655.7 nm
Explanation:
Given
The slits are separated by 
Distance between slits and screen is 
Adjacent bright fringes are
apart
Also, the distance between bright fringes is given by
![\Rightarrow \beta =\dfrac{\lambda D}{d}\quad [\lambda=\text{Wavelength of light}]\\\\\text{Insert the values}\\\\\Rightarrow 2.88\times 10^{-3}=\dfrac{\lambda \cdot 2.24}{0.510\times 10^{-3}}\\\\\Rightarrow \lambda =\dfrac{2.88\times 10^{-3}\times 0.510\times 10^{-3}}{2.24}\\\\\Rightarrow \lambda =0.6557\times 10^{-6}\ m\\\Rightarrow \lambda =655.7\ nm](https://tex.z-dn.net/?f=%5CRightarrow%20%5Cbeta%20%3D%5Cdfrac%7B%5Clambda%20D%7D%7Bd%7D%5Cquad%20%5B%5Clambda%3D%5Ctext%7BWavelength%20of%20light%7D%5D%5C%5C%5C%5C%5Ctext%7BInsert%20the%20values%7D%5C%5C%5C%5C%5CRightarrow%202.88%5Ctimes%2010%5E%7B-3%7D%3D%5Cdfrac%7B%5Clambda%20%5Ccdot%202.24%7D%7B0.510%5Ctimes%2010%5E%7B-3%7D%7D%5C%5C%5C%5C%5CRightarrow%20%5Clambda%20%3D%5Cdfrac%7B2.88%5Ctimes%2010%5E%7B-3%7D%5Ctimes%200.510%5Ctimes%2010%5E%7B-3%7D%7D%7B2.24%7D%5C%5C%5C%5C%5CRightarrow%20%5Clambda%20%3D0.6557%5Ctimes%2010%5E%7B-6%7D%5C%20m%5C%5C%5CRightarrow%20%5Clambda%20%3D655.7%5C%20nm)
Answer:
Drag, which is a force preventing the ball from going faster than it was thrown, this increases as velocity increases. Gravity, which Is pulling down on the ball.
Explanation: