Displacement from the center line for minimum intensity is 1.35 mm , width of the slit is 0.75 so Wavelength of the light is 506.25.
<h3>How to find Wavelength of the light?</h3>
When a wave is bent by an obstruction whose dimensions are similar to the wavelength, diffraction is observed. We can disregard the effects of extremes because the Fraunhofer diffraction is the most straightforward scenario and the obstacle is a long, narrow slit.
This is a straightforward situation in which we can apply the
Fraunhofer single slit diffraction equation:
y = mλD/a
Where:
y = Displacement from the center line for minimum intensity = 1.35 mm
λ = wavelength of the light.
D = distance
a = width of the slit = 0.75
m = order number = 1
Solving for λ
λ = y + a/ mD
Changing the information that the issue has provided:
λ = 1.35 * 10^-3 + 0.75 * 10^-3 / 1*2
=5.0625 *10^-7 = 506.25
so
Wavelength of the light 506.25.
To learn more about Wavelength of the light refer to:
brainly.com/question/15413360
#SPJ4
Answer:
Convection currents are the result of different heating. Lighter material (warm) rises while heavier (cold) material sinks. This movement of the materials is what causes convection currents! (BTW, it happens in water, in the atmosphere, and in the mantle of Earth!
Explanation:
I hope this helps a little! :)
The members of these groups make up the majority of voters in many districts thus this be considered a problem.
<u>Option: D</u>
<u>Explanation:</u>
Interest groups play a key role in US politics. Such organizations are made up of wealthy and powerful members who often seek to impose some form of leverage in politicians to promote their goals and agendas. Across the years via many campaigns, they have understood how to speak and manipulate elected leaders and apply leverage to get the kind of legislation that is in their favor. Here the majority of voters in several districts are standing due to group members, as we recognize the interest group belongs to a body in which it uses different methods of lobbying to influence others.
Answer:
9.34 N
Explanation:
First of all, we can calculate the speed of the wave in the string. This is given by the wave equation:

where
f is the frequency of the wave
is the wavelength
For the waves in this string we have:
, since it completes 625 cycles per second
is the wavelength
So the speed of the wave is

The speed of the waves in a string is related to the tension in the string by
(1)
where
T is the tension in the string
is the linear density
In this problem:
is the mass of the string
L = 0.75 m is the its length
Solving the equation (1) for T, we find the tension:

Answer:
U = 1 / r²
Explanation:
In this exercise they do not ask for potential energy giving the expression of force, since these two quantities are related
F = - dU / dr
this derivative is a gradient, that is, a directional derivative, so we must have
dU = - F. dr
the esxresion for strength is
F = B / r³
let's replace
∫ dU = - ∫ B / r³ dr
in this case the force and the displacement are parallel, therefore the scalar product is reduced to the algebraic product
let's evaluate the integrals
U - Uo = -B (- / 2r² + 1 / 2r₀²)
To complete the calculation we must fix the energy at a point, in general the most common choice is to make the potential energy zero (Uo = 0) for when the distance is infinite (r = ∞)
U = B / 2r²
we substitute the value of B = 2
U = 1 / r²