Answer:
option "c"
Explanation:
because in gases molecules are further apart and move very quickly
Answer:
The contribution of the wavelets lying on the back of the wave front is zero because of something known as the Obliquity Factor. It is assumed that the amplitude of the secondary wavelets is not independent of the direction of propagation, Sources: byju's.com
We need to be careful here.
The calculation of the gravitational force between two objects
refers to the distance between their centers.
The minimum possible distance between the Earth's and moon's
centers is the sum of their radii (radiuses).
Earth's radius . . . . . 6,360 km = 6.36 x 10⁶ meters
Moon's radius . . . . . 1,738 km = 1.738 x 10⁶ meters
Sum of their radii = 8.098 x 10⁶ meters
Also:
Earth's mass . . . . . 5.972 x 10²⁴ kg
Moon's mass . . . . . 7.348 x 10²² kg
<span>
and now we're ready to go !
Gravitational force =
G M₁ M₂ / R²
= (6.67 x 10⁻¹¹ N-m²/kg²)(</span><span>5.972 x 10²⁴ kg)(7.348 x 10²² kg)/</span>(8.098 x 10⁶ m)²
= (6.67 · 5.972 · 7.348 / 8.098²) · (10²³) Newtons
= (I get ...) 4.463 x 10²³ Newtons
That's almost exactly 10²³ pounds
= 50,153,000,000,000,000,000 tons.
Those are big numbers.
All I can say is: I wouldn't exactly call that "resting" on the surface".
288.51 N is the magnitude of the force that the beam exerts on the hi.nge.
Given
Mass 0f beam = 40 Kg
The horizontal component of the force exerted by the hi_nge on the beam is 86.62 N
Angle between the beam and cable is = 90°
Angle between beam and the horizontal component = 31°
As the system of the beam, hi_nge and cable are in equilibrium.
The magnitude of the force that the beam exerts on the hi_nge can be calculated by -
F =The horizontal component of force + the vertical component of force
F = 86.62 N + 40 × 9.8 × sin 31°
F =86.62 N + 201.89 N
F = 288.51 N
Hence, the magnitude of the force that the beam exerts on the hi_nge is 288.51 N.
Learn more about components of forces here brainly.com/question/26446720
#SPJ1
Good i’m tired how about you