Answer:
Graph C
Explanation:
With the same force and more mass, the position in time will still be parabolic
i.e. x = ½at², but the rate of acceleration will be lower so the position curve will be broader.
Answer:
Speed of the helium after collision = 246 m/s
Explanation:
Given that
Mass of helium ,m₁ = 4 u
u₁=598 m/s
Mass of oxygen ,m₂ = 32 u
u₂ = 401 m/s
v₂ =445 m/s
Given that initially both are moving in the same direction and lets take they are moving in the right direction.
Speed of the helium after collision = v₁
There is no any external force on the masses that is why the linear momentum will be conserve.
Initial linear momentum = Final linear momentum
P = m v
m₁u₁+m₂u₂ = m₁v₁+m₂v₂
598 x 4 + 32 x 401 = 4 x v₁+ 32 x 445
v₁ = 246 m/s
Speed of the helium after collision = 246 m/s
Answer:
option (B)
Explanation:
Intensity of unpolarised light, I = 25 W/m^2
When it passes from first polarisr, the intensity of light becomes

Let the intensity of light as it passes from second polariser is I''.
According to the law of Malus

Where, θ be the angle between the axis first polariser and the second polariser.

I'' = 11.66 W/m^2
I'' = 11.7 W/m^2
Non living and dead are the same thing
Answer:
The mechanical advantage of a machine is the ratio of the load (the resistance overcome by a machine) to the effort (the force applied). For an ideal (without friction) mechanism, it is also equal to: There is no unit for mechanical advantages since the unit for both input and output forces cancel out.
Explanation: