<u>Inertia affects the motion of an object as follows:</u>
When an object is in motion, it will continue to be in the same state unless otherwise some outside force is being applied to it. Thus, inertia affects the motion of an object. It restricts some other force being acted upon the object.
But mass of an object is directly proportional to inertia. So when the inertia is more on an object, it means that the object has more mass. For example, if there are two similar bricks, one that is made up of mortar and the other one is made of Styrofoam.
To identify which brick is made of Styrofoam without lifting the bricks, push both the bricks with equal force, the one that has less resistance tends to move faster. This means that it has less inertia and hence less mass.
Under general relativity, there is no 'before the Big Bang'. The problem is that time is itself a part of the universe and is affected by matter and energy. Because of the huge densities just after the Big Bang, time itself is warped in such a way that it cannot go back before that event. It is somewhat like asking what is north of the north pole.
The conservation of matter and energy states that the total amount of mass and energy at one time is the same at any other time. Notice how time is a crucial part of this statement. To even talk about conservation laws, you have to have time.
The upshot is that the Big Bang did not break the conservation laws because time itself is part of the universe and started at the Big Bang and because the conservation laws need to have time in their statements.
Answer:
4 times
Explanation:
As we know that the energy of a wave is directly proportional to the square of the amplitude of the wave,
Here, the amplitude of the wave A is twice as compared to B.
So, the energy of wave A is 4 times the energy of wave B.
Answer:
F = 2.49 x 10⁻⁹ N
Explanation:
The electrostatic force between two charged bodies is given by Colomb's Law:

where,
F = Electrostatic Force = ?
k = colomb's constant = 9 x 10⁹ N.m²/C²
q₁ = charge on proton = 1.6 x 10⁻¹⁹ C
q₂ = second charge = 1.4 C
r = distace between charges = 0.9 m
Therefore,

<u>F = 2.49 x 10⁻⁹ N</u>