Answer: Force and Movement
Explanation:
The first is that the object moves. The second is that a force must act on the object in the direction the object moves.
Answer:
The answer is 34.67 kilograms force
<span>You can start with the equations you know
a=v^2/r = (2pi*r/T)^2/r = 4pi^2r/T^2
Radius of earth (R) = 6378.1 km
Time in one day (T) = 86400 seconds
Latitude = 44.4 degrees
If you draw a circle and have the radius going out at a 44.4 degree angle above the center you can then find the r.
r=Rcos(44.4)
r=6378.1cos(44.4)
r= 4556.978198 km or 4556978 m
Now you can plug this value into the acceleration equation from above...
a= 1.8*10^8/7.47*10^9
a= .0241 m/s^2 </span>
Static equilibrium means that all forces are equal, so make this easiest you want to break F1 into it's horizontal and vertical components. As there are no other forces acting in the horizontal, we know the horizontal component of F1 is 40N. This allows the vertical component to be found using pythagorus theorem. After finding the vertical and horizontal components, you just have to add the vertical components to find the difference between the up and down.
Answer:
e) 120m/s
Explanation:
When the ball reaches its highest point, its velocity becomes zero, meaning
.
where
is the initial velocity.
Solving for
we get
which is the time it takes the ball to reach the highest point.
Now, after the ball has reached its highest point, it turns around and falls downwards. After time
since it had reached the highest point, the ball has traveled downwards and the velocity
it has gained is
,
and we are told that this is twice the initial velocity
; therefore,

which gives

Thus, the total time taken to reach velocity
is


This
, we are told, is 36 seconds; therefore,

and solving for
we get:



which from the options given is choice e.