Explanation:
(a)
Critical angle is the angle at the angle of refraction is 90°. After the critical angle, no refraction takes place.
Using Snell's law as:
Where,
is the angle of incidence
is the angle of refraction = 90°
is the refractive index of the refraction medium
is the refractive index of the incidence medium
Thus,
The formula for the calculation of critical angle is:
Where,
is the critical angle
(b)
No it cannot occur. It only occur when the light ray bends away from the normal which means that when it travels from denser to rarer medium.
Answer:
An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about 2 years.
Explanation:
Given;
orbital period of 3 years, P = 3 years
To calculate the years of an orbital with a semi-major axis, we apply Kepler's third law.
Kepler's third law;
P² = a³
where;
P is the orbital period
a is the orbital semi-major axis
(3)² = a³
9 = a³
a = ![a = \sqrt[3]{9} \\\\a = 2.08 \ years](https://tex.z-dn.net/?f=a%20%3D%20%5Csqrt%5B3%5D%7B9%7D%20%5C%5C%5C%5Ca%20%3D%202.08%20%5C%20years)
Therefore, An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about 2 years.
Answer:

Explanation:
Net external force that exerted on the block is given as

here we know that



now we have

so we have

now the force exerted by bigger block on smaller block is given as



now we know that two blocks will exert equal and opposite force on each other
so here the force exerted by 2 kg block on 4 kg block will be

We know that:
Solving for Distance:
- Distance = Work / Force
- Distance = 1220 J / 280 N
<h3> Distance = 4.36 m </h3>
Answer:
the rate of acceleration of the train is 4 m/s²
Explanation:
Given;
initial velocity of the train, u = 10 m/s
change in time of motion, dt = 5 s
final velocity of the train, v = 30 m/s
The rate of acceleration of the train is calculated as;

Therefore, the rate of acceleration of the train is 4 m/s²