Answer:
<h3>The answer is 10 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 300 g
volume = final volume of water - initial volume of water
volume = 40 - 10 = 30 mL
We have

We have the final answer as
<h3>10 g/mL</h3>
Hope this helps you
Answer:
The osmotic pressure of cell is
KPa
Explanation:
As we know the osmotic pressure is equal to

Where
i is the Van Hoff factor
c is the concentration of solution
R is the ideal gas constant
and T is the temperature.
Substituting the given values, we get -

KPa
Explanation:
1) Thermal and Electric conductivity
2) Metallic strength
The equilibrium constant is found by [product]/[reactant]
If the equilibrium constant is very small, such as 4.20 * 10^-31, then that means at equilibrium there is very little product and a lot of reactant.
And likewise, if there is a lot of product formed, and very little reactant, then the K value will be very large, which tells us that it is predominantly product.
At equilibrium, for any reaction, there will always be some reactant and some product present. There cannot be zero reactant or zero product. Also keep in mind that the equilibrium constant is dependent on temperature.
At equilibrium, for your reaction, it is predominantly reactants.
Answer:
98.6 g/mol.
Explanation:
Equation of the reaction
HX + NaOH--> NaX + H2O
Number of moles = molar concentration × volume
= 0.095 × 0.03
= 0.00285 moles
By stoichiometry, 1 mole of HX reacted with 1 mole of NaOH. Therefore, number of moles of HX = 0.00285 moles.
Molar mass = mass ÷ number of moles
= 0.281 ÷ 0.00285
= 98.6 g/mol.