I don’t think you can get it for
Answer:
Option A. The polar solvent molecule surrounds the positive sodium ions and the negative chloride ions.
Explanation:
When a salt say NaCl dissolved in water, the solvent molecules surround both the Na+ and Cl-. The Na+ are surrounded by OH- and the Cl- are surrounded by H+.
Answer:
CuCl2-Ion-dipole forces
CuSO4-Ion-dipole forces
NH3-Dipole-dipole forces
CH3OH-Dipole-dipole forces
Explanation:
Water consists of a dipole. The water molecule contains a positive end and a negative end. The positive ion attracts the negative dipole of water while the positive dipole in water interacts with the negative ion of an ionic substance. This explains the dissolution of ionic substances in water.
Copper II chloride and copper sulphate are ionic substances hence they dissolve by the mechanism described above.
Molecules consisting of dipoles dissolves by interaction of the molecule's dipoles with the dipoles in water. For example, methanol interacts with water through hydrogen bonding which is involves molecular dipoles
Answer:
ΔH°r = -1562 kJ
Explanation:
Let's consider the following combustion.
C₂H₆(g) + 7/2 O₂(g) ⇒ 2 CO₂(g) + 3 H₂O(l)
We can calculate the standard heat of reaction (ΔH°r) using the following expression:
ΔH°r = ∑np × ΔH°f(p) - ∑nr × ΔH°f(r)
where,
ni are the moles of reactants and products
ΔH°f(i) are the standard heats of formation of reactants and products
The standard heat of formation of simple substances in their most stable state is zero. That means that ΔH°f(O₂(g)) = 0
ΔH°r = ∑np × ΔH°f(p) - ∑nr × ΔH°f(r)
ΔH°r = [2 mol × ΔH°f(CO₂) + 3 mol × ΔH°f(H₂O)] - [1 mol × ΔH°f(C₂H₆) + 7/2 mol × ΔH°f(O₂)]
ΔH°r = [2 mol × (-394.0 kJ/mol) + 3 mol × (-286.0 kJ/mol)] - [1 mol × (-84.00 kJ/mol) + 7/2 mol × 0]
ΔH°r = -1562 kJ