Answer:
235/92U+10n→144/54Xe+90/38Sr+2/10n
Explanation:
- The nuclear reaction for the neutron-induced fission of u−235 to form xe−144 and sr−90 is represented by;
235/92U+10n→144/54Xe+90/38Sr+2/10n
- In nuclear fission reactions a heavy nuclide is split into two light nuclides and is coupled by the release of energy.
I believe the answer is A.
Hope this helps! ^^
Partial pressure of gas A is 1.31 atm and that of gas B is 0.44 atm.
The partial pressure of a gas in a mixture can be calculated as
Pi = Xi x P
Where Pi is the partial pressure; Xi is mole fraction and P is the total pressure of the mixture.
Therefore we have Pa = Xa x P and Pb = Xb x P
Let us find Xa and Xb
Χa = mol a/ total moles = 2.50/(2.50+0.85) = 2.50/3.35 = 0.746
Xb = mol b/total moles = 0.85/(2.50+0.85) = 0.85/3.35 = 0.254
Total pressure P is given as 1.75 atm
Pa = Xa x P = 0.746 x 1.75 = 1.31atm
Partial pressure of gas A is 1.31 atm
Pb = Xb x P = 0.254 x 1.75 = 0.44atm
Partial pressure of gas B is 0.44 atm.
Learn more about Partial pressure here:
brainly.com/question/15302032
#SPJ4
0.091 moles are contained in 2.0 L of N2 at standard temperature and pressure.
Explanation:
Data given:
volume of the nitrogen gas = 2 litres
Standard temperature = 273 K
Standard pressure = 1 atm
number of moles =?
R (gas constant) = 0.08201 L atm/mole K
Assuming nitrogen to be an ideal gas at STP, we will use Ideal Gas law
PV = nRT
rearranging the equation to calculate number of moles:
PV = nRT
n = 
putting the values in the equation:
n = 
n = 0.091 moles
0.091 moles of nitrogen gas is contained in a container at STP.
The answer is: A
C-14 is not stable and this is the reason why it goes through radioactive decay.