Answer:
See Explanation
Explanation:
It is a common observation that a strip of aluminium metal in aqueous copper(II)Sulfate does not show any visible reaction. Aluminium is normally expected to displace copper in solution since it is higher than copper in the electrochemical series.
The reason for this is that aluminium forms an oxide film around its surface which prevents reaction with aqueous copper(II)Sulfate. This oxides film protects the aluminium surface such that it is now unable to react with the aqueous copper(II)Sulfate
Electronic configuration: The distribution or arrangement of electrons of a molecule or an atom in molecular or atomic orbitals.
Ground state electron configuration: The distribution of electrons of an atom or molecule around the nucleus with lower levels of energy.
Now,
stands for Ruthenium with atomic number 44. It is a metal and thus, has ability to lose electrons and, becomes positively charged ion.
One can write the electronic configuration with the help of atomic number and Afbau principle, Pauli exclusion principle etc.
Ground electronic Configuration is as follows:

Soft Hand notation: ![[Kr]4d^{7}5s^{1}](https://tex.z-dn.net/?f=%5BKr%5D4d%5E%7B7%7D5s%5E%7B1%7D)
Now, when ruthenium loses two electrons then it becomes
, thus electron configuration becomes
Soft Hand notation: ![[Kr]4d^{6}](https://tex.z-dn.net/?f=%5BKr%5D4d%5E%7B6%7D)
The ground state electronic configuration of Ruthenium is
and when it loses two electrons, then electronic configuration becomes
(
)
Answer:B
Explanation:Coefficient represents the number of units of each substance.
Answer:
C6H14O3F
Explanation:
The first step is to divide each compound by its molecular weight
Carbon
= 39.10/12
= 3.258
Hydrogen
= 7.67/1
= 7.67
Oxygen
= 26.11/16
= 1.63
Phosphorous
= 16.82/31
= 0.542
Flourine
= 10.30/19
= 0.542
The next step is to divide by the lowes value
3.258/0.542
= 6 mol of C
7.67/0.542
= 14 mol of H
1.63/0.542
= 3 mol of O
0.542/0.542
= 1 mol of P
0.542/0.542
= 1 mol of F
Hence the molecular formula is C6H14O3F
Answer:
0.712 mol
Explanation:
The easiest way to do this is to use a proportion.
1 mol of copper = 63.5 grams (check this using your periodic table).
x mol of copper = 45.2 grams
1/x = 63.5 / 45.2 Cross multiply
63.5 x = 1 * 45.2 Divide by 63.5
x = 45.2/63.5
x = 0.712 mol Answer to 3 sig digs