Answer:
8 cm3
Explanation:
The volume of this irregular solid will calculated as the difference between the final volume and the initial volume;
The final volume of the water and the solid is 25 ml
The initial volume of the water alone was 17 ml
The volume of the irregular solid is thus approximately;
25 - 17 = 8 ml
We then use the conversion;
1 cm3 = 1 mL
Thus the volume of the solid is 8 cm3
<h2>Giant impact and metalcore.</h2>
Explanation :
- Mercury has a large core of liquid metal.
- The metal core is of iron metal.
- The core is surrounded by a mantle which is made up of silica and a solid outer crust.
- In the case of Mercury, the total core percentage is 42% of the planet while the Earth's core is only 17% of the planet.
- Mercury has lost part of its mantle and crust that left the mercury with a large metal core.
Answer:
sample B contains the larger density
Explanation:
Given;
volume of sample A, V = 300 mL = 0.3 L
Molarity of sample A, C = 1 M
volume of sample B, V = 145 mL = 0.145 L
Molarity of sample B, C = 1.5 M
molecular mass of sodium chloride, Nacl = 23 + 35.5 = 58.5 g/mol
Molarity is given as;

The reacting mass for sample A = 0.3mol x 58.5 g/mol = 17.55 g
The reacting mass for sample B = 0.2175 mol x 58.5 g/mol = 12.72 g
The density of sample A 
The density of sample B 
Therefore, sample B contains the larger density
Your drawing looks so good :p
Examination by a test; experiment, as in chemistry, metallurgy, etc.