Answer:
Hope this helps! Mark as brainliest if liked thanks!
Explanation:
Your reasoning that the shadow is the shortest at mid-day is spot-on!
The wording of the question is the key to the answer. It says that the measurements were made in Summer. So this means that British Summer Time (BST) is being applied. BST is one hour ahead of Greenwich Mean Time and so what looks like 1pm is really 12 noon.
The safest sort of answer is to say that the shadow is shortest when the sun is at its highest point, and in this particular question that is at 1 pm because it is BST.
<u>Answer:</u>
Pressure exerted = 500 Pa
<u>Explanation:</u>
The formula for pressure is as follows:

In this case,
Force applied = 100N
Area = 40cm × 50cm = 2000cm² = 2000 × 10⁻⁴ = 0.2m²
Substituting these values into the formula:
Pressure = 
⇒ Pressure = 500 Pa
Answer:
Transferred material is in the same relative position on the disk as on the original sample
Explanation:
The usefulness of blotting techniques in molecular biology is that transferred material is in the same relative position on the disk as on the original sample
Option D is correct. The speed at which the earth's surface moves because of the earth's rotation will then be equivalent to -10³ km/hr
Speed is a body is defined as the ratio of the distance with respect to the time taken by the body. Mathematically:
Speed = Distance/Time
GIven the following
Distance = 104km/hr
If it is 6:00 p.m. in New York, it is 7:00 a.m. of the next day of the week in Tokyo, this means that the time difference between New York and Tokyo is 11 hours.
Time = -11 hours
Get the required speed
Speed = 104/-11
Speed = -9.454545
Speed = -10km/hr
The speed at which the earth's surface moves because of the earth's rotation will then be equivalent to -10³ km/hr
Learn more here: brainly.com/question/2583051
<h3>
Answer:</h3>
1.3 Amps
<h3>
Explanation:</h3>
<u>We are given;</u>
A circuit with resistors, R1 and R2
R1 = 7 Ω
R2 = 11 Ω
Voltage = 24 V
We are required to calculate the current in the circuit.
<h3>Step 1: We need to find the effective resistance.</h3>
When resistors are arranged in series, the effective resistance is calculated by;
Rt = R₁ + R₂ + R₃ + ..........Rₙ
Therefore;
Total resistance = 7 + 11
= 18 Ω
<h3>Step 2: Calculate the current in the circuit</h3>
From the ohm's law;
V = IR
Rearranging the formula;
I = V/R
Thus;
I = 24 V ÷ 18 Ω
= 1.333 Amps
= 1.3 Amps
Thus, the current in the circuit is 1.3 Amps