Answer:
Say a 14 year old girl was at a construction site and she was asked to move something like a 10,000 pound brick( one brick). She would be acting on it as the unbalanced force but they would still not change their position.
so to say the girl would be doing everything she could to move that brick but the brick would still be in that same spot so the unbalanced force (the girl) would be acting on the thing that was at rest but it wouldn't move.
so the unbalanced force would not really be acting on the thing at rest; even though the unbalanced force was doing something to the brick.
( just think about it and you will eventually get it...just imagine in your head...)
Explanation:
The transfer of energy means, in convention process, transport of matter. In this case, hot water has lower density than cool water. The water with less density ascends and leaves gaps that are occupied with cooler water "packages".
Answer:
The acceleration is a = 2.75 [m/s^2]
Explanation:
In order to solve this problem we must use kinematics equations.

where:
Vf = final velocity = 13 [m/s]
Vi = initial velocity = 2 [m/s]
a = acceleration [m/s^2]
t = time = 4 [s]
Now replacing:
13 = 2 + (4*a)
(13 - 2) = 4*a
a = 2.75 [m/s^2]
Answer: Igneous rock , formed by the cooling of magma (molten rock) inside the Earth or on the surface. Sedimentary rocks, formed from the products of weathering by cementation or precipitation on the Earth's surface. Metamorphic rocks, formed by temperature and pressure changes inside the Earth.
Explanation:
Answer:
d. The ideal diode acts as a short circuit for forward currents and as an open circuit with reverse voltage applied.
Explanation:
Ideal diode acts like an ideal conductor. In case of forward voltage it acts like an ideal conductor. However when it is reverse biased then it behaves like an ideal insulator. You can understand it bu considering a switch. When the voltage is forward then ideal diode acts like a closed switch. When the voltage is reverse biased then ideal diode behaves like an open switch.
That is why we can say that the ideal diode acts as a short circuit (higher conduction) for forward currents and as an open circuit ( zero conduction) with reverse voltage applied.