Answer:
a) 1253 kJ
b) 714 kJ
c) 946 C
Explanation:
The thermal efficiency is given by this equation
η = L/Q1
Where
η: thermal efficiency
L: useful work
Q1: heat taken from the heat source
Rearranging:
Q1 = L/η
Replacing
Q1 = 539 / 0.43 = 1253 kJ
The first law of thermodynamics states that:
Q = L + ΔU
For a machine working in cycles ΔU is zero between homologous parts of the cycle.
Also we must remember that we count heat entering the system as positiv and heat leaving as negative.
We split the heat on the part that enters and the part that leaves.
Q1 + Q2 = L + 0
Q2 = L - Q1
Q2 = 539 - 1253 = -714 kJ
TO calculate a temperature for the heat sink we must consider this cycle as a Carnot cycle. Then we can use the thermal efficiency equation for the Carnot cycle, this one uses temperatures:
η = 1 - T2/T1
T2/T1 = 1 - η
T2 = (1 - η) * T1
The temperatures must be given in absolute scale (1453 C = 1180 K)
T2 = (1 - 0.43) * 1180 = 673 K
673 K = 946 C
Answer:
116.3 electrons
Explanation:
Data provided in the question:
Time, t = 2.55 ps = 2.55 × 10⁻¹² s
Current, i = 7.3 μA = 7.3 × 10⁻⁶ A
Now,
we know,
Charge, Q = it
thus,
Q = (7.3 × 10⁻⁶) × (2.55 × 10⁻¹²)
or
Q = 18.615 × 10⁻¹⁸ C
Also,
We know
Charge of 1 electron, q = 1.6 × 10⁻¹⁹ C
Therefore,
Number of electrons past a fixed point = Q ÷ q
= [ 18.615 × 10⁻¹⁸ ] ÷ [ 1.6 × 10⁻¹⁹ ]
= 116.3 electrons
Answer:
1561.84 MPa
Explanation:
L=20 cm
d1=0.21 cm
d2=0.25 cm
F=5500 N
a) σ= F/A1= 5000/(π/4×(0.0025)^2)= 1018.5916 MPa
lateral strain= Δd/d1= (0.0021-0.0025)/0.0025= -0.16
longitudinal strain (ε_l)= -lateral strain/ν = -(-0.16)/0.3
(assuming a poisson's ration of 0.3)
ε_l =0.16/0.3 = 0.5333
b) σ_true= σ(1+ ε_l)= 1018.5916( 1+0.5333)
σ_true = 1561.84 MPa
ε_true = ln( 1+ε_l)= ln(1+0.5333)
ε_true= 0.4274222
The engineering stress on the rod when it is loaded with a 5500 N weight is 1561.84 MPa.
Explanation:
Thermodynamics system :
Thermodynamics system is a region or space in which study of matters can be done.The system is separated from surroundings by a boundary this boundary maybe flexible or fixed it depends on situations.The out side the system is called surroundings.
Generally thermodynamics systems are of three types
1.Closed system(control mass system)
Only energy transfer take place ,no mass transfer take place.
2.Open system(control volume system)
Both mass as well as energy transfer take place.
3.Isolated system
Neither mass or nor energy transfer take place.
At steady state ,property is did not changes with respect to time.