Answer: 150m
Explanation:
The following can be depicted from the question:
Dimensions of outer walls = 9.7m × 14.7m.
Thickness of the wall = 0.30 m
Therefore, the plinth area of the building will be:
= (9.7 + 0.30/2 + 0.30/2) × (14.7 × 0.30/2 + 0.30/2)
= 10 × 15
= 150m
Answer: Option A is correct -- 2.6 at% Pb and 97.4 at% Sn.
Explanation:
Option A is the only correct option -- 2.6 at% Pb and 97.4 at% Sn. While option B, which is 7.6 at% Pb and 92.4 at% Sn. and option C, which is 97.4 at% Pb and 2.6 at% Sn. and option D, which is 92.4 at% Pb and 7.6 at% Sn. are wrong.
Answer:
An architect will help you determine exactly what you need and come up with inventive ideas to solve even the most complex design problems. Think of us as professional 3D problem solvers! An architect can and should lift your project out of the ordinary.
Explanation:
What are the 3 main functions of an architect?
Design: Architects must design, plan, and develop concepts to create construction plans and technical documents. These are based on client requirements and ideas. Research: Architects must learn about the different building codes, safety regulations, construction innovations and city laws that affect their designs
What are the 7 types of architecture?
There are several main types of architects who focus on different types of structures and designs.
...
Commercial Architects
Office buildings / skyscrapers.
Hotels.
Bridges.
Schools.
Museums.
Government buildings.
Multi-unit residential buildings.
Pretty much any type of building that's not a residential home.
Answer: I am not for sure
Explanation:
In order to develop this problem it is necessary to take into account the concepts related to fatigue and compression effort and Goodman equation, i.e, an equation that can be used to quantify the interaction of mean and alternating stresses on the fatigue life of a materia.
With the given data we can proceed to calculate the compression stress:



Through Goodman's equations the combined effort by fatigue and compression is expressed as:

Where,
Fatigue limit for comined alternating and mean stress
Fatigue Limit
Mean stress (due to static load)
Ultimate tensile stress
Security Factor
We can replace the values and assume a security factor of 1, then

Re-arrenge for 

We know that the stress is representing as,

Then,
Where
=Max Moment
I= Intertia
The inertia for this object is

Then replacing and re-arrenge for 



Thereforethe moment that can be applied to this shaft so that fatigue does not occur is 3.2kNm