Answer:
For water
Flow rate= 0.79128*10^-3 Ns
For Air
Flow rate =1.2717*10^-3 Ns
Explanation:
For the flow rate of water in pipe.
Area of the pipe= πd²/4
Diameter = 30/1000
Diameter= 0.03 m
Area= 3.14*(0.03)²/4
Area= 7.065*10^-4
Flow rate = 7.065*10^-4*1.12E-3
Flow rate= 0.79128*10^-3 Ns
For the flow rate of air in pipe.
Flow rate = 7.065*10^-4*1.8E-5
Flow rate =1.2717*10^-3 Ns
i believe it is soft drink production
Answer and Explanation:
The coefficient of determination also called "goodness of fit" or R-squared(R²) is used in statistical measurements to understand the relationship between two variables such that changes in one variable affects the other. The level of relationship or the degree to which one affects the other is measured by 0 to 1 whereby 0 means no relationship at all and 1 means one totally affects the other while figures in between such 0.40 would mean one variable affects 40% of the other variable.
In making a decision as an engineer while using the coefficient of determination, one would try to understand the relationship between variables under consideration and make decisions based on figures obtained from calculating coefficient of determination. In other words when there is a 0 coefficient then there is no relationship between variables and an engineer would make his decisions with this in mind and vice versa.
Answer:
a) the power consumption of the LEDs is 0.25 watt
b) the LEDs drew 0.0555 Amp current
Explanation:
Given the data in the question;
Three AAA Batteries;
<---- 1000mAh [ + -] 1.5 v ------1000mAh [ + -] 1.5 v --------1000mAh [ + -] 1.5 v------
so V_total = 3 × 1.5 = 4.5V
a) the power consumption of the LEDs
I_battery = 1000 mAh / 18hrs { for 18 hrs}
I_battery = 1/18 Amp { delivery by battery}
so consumption by led = I × V_total
we substitute
⇒ 1/18 × 4.5
P = 0.25 watt
Therefore the power consumption of the LEDs is 0.25 watt
b) How much current do the LEDs draw
I_Draw = I_battery = 1/18 Amp = 0.0555 Amp
Therefore the LEDs drew 0.0555 Amp current
Answer:
The new length of the rod is 182 cm.
Explanation:
Given that a rod that was originally 100-cm-long experiences a strain of 82%, to determine what is the new length of the rod, the following calculation must be performed:
100 x 1.82 = X
182 = X
Therefore, the new length of the rod is 182 cm.