Answer:
La probabilidad pedida es 
Explanation:
Sabemos que la probabilidad de que un nuevo producto tenga éxito es de 0.85. Sabemos también que se eligen 10 personas al azar y se les pregunta si comprarían el nuevo producto. Para responder a la pregunta, primero definiremos la siguiente variable aleatoria :
'' Número de personas que adquirirán el nuevo producto de 10 personas a las que se les preguntó ''
Ahora bien, si suponemos que la probabilidad de que el nuevo producto tenga éxito se mantiene constante
y además suponemos que hay independencia entre cada una de las personas al azar a las que se les preguntó ⇒ Podemos modelar a
como una variable aleatoria Binomial. Esto se escribe :
~
en donde
es el número de personas entrevistadas y
es la probabilidad de éxito (una persona adquiriendo el producto) en cada caso.
Utilizando los datos ⇒
~ 
La función de probabilidad de la variable aleatoria binomial es :
con 
Si reemplazamos los datos de la pregunta en la función de probabilidad obtenemos :
con 
Nos piden la probabilidad de que por lo menos 8 personas adquieran el nuevo producto, esto es :

Calculando
y
por separado y sumando, obtenemos que 
Answer:
We would need background context,
Explanation:
Then I would be happy to help!
Answer:
Explanation gives the answer
Explanation:
% Using MATLAB,
% Matlab file : fieldtovar.m
function varargout = fieldtovar(S)
% function that accepts single structure as input, assigning each
% of the field values to user-defined variables
fields = fieldnames(S); % get the field names of the input structure
% check if number of user-defined variables and number of fields in
% structure are equal
if nargout == length(fields)
% if equal assign each value of structure to user-defined varable
for i=1:nargout
varargout{i} = getfield(S,fields{i});
end
else
% if not equal display an error message
error('The number of output variables does not equal the number of fields');
end
end
%This brings an end to the program
Answer:
S = 0.5 km
velocity of motorist = 42.857 km/h
Explanation:
given data
speed = 70 km/h
accelerates uniformly = 90 km/h
time = 8 s
overtakes motorist = 42 s
solution
we know initial velocity u1 of police = 0
final velocity u2 = 90 km/h = 25 mps
we apply here equation of motion
u2 = u1 + at
so acceleration a will be
a =
a = 3.125 m/s²
so
distance will be
S1 = 0.5 × a × t²
S1 = 100 m = 0.1 km
and
S2 = u2 × t
S2 = 25 × 16
S2 = 400 m = 0.4 km
so total distance travel by police
S = S1 + S2
S = 0.1 + 0.4
S = 0.5 km
and
when motorist travel with uniform velocity
than total time = 42 s
so velocity of motorist will be
velocity of motorist = 
velocity of motorist =
velocity of motorist = 42.857 km/h
Explanation:
i think option 4 is correct answer because itsrelated to animal not plants.