Answer:
A. 32.6 g/mol
Explanation:
First convert the volume of gas to moles using the ratio 1 mol / 22.4 L at STP.
0.070 L • (1 mol / 22.4 L) = 0.00313 mol
Now divide the grams of gas by the moles of gas:
0.102 g / 0.00313 mol = 32.6 g/mol
Answer:
3.15 × 10⁻⁶ mol H₂/L.s
1.05 × 10⁻⁶ mol N₂/L.s
Explanation:
Step 1: Write the balanced equation
2 NH₃ ⇒ 3 H₂ + N₂
Step 2: Calculate the rate of production of H₂
The molar ratio of NH₃ to H₂ is 2:3. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of H₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 3 mol H₂/2 mol NH₃ = 3.15 × 10⁻⁶ mol H₂/L.s
Step 3: Calculate the rate of production of N₂
The molar ratio of NH₃ to N₂ is 2:1. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of N₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 1 mol N₂/2 mol NH₃ = 1.05 × 10⁻⁶ mol N₂/L.s
<h2>

</h2>
Explanation:
1. Water decomposition
- Decomposition reactions are represented by-
The general equation: AB → A + B.
- Various methods used in the decomposition of water are -
- Electrolysis
- Photoelectrochemical water splitting
- Thermal decomposition of water
- Photocatalytic water splitting
- Water decomposition is the chemical reaction in which water is broken down giving oxygen and hydrogen.
- The chemical equation will be -

Hence, balancing the equation we need to add a coefficient of 2 in front of
on right-hand-side of the equation and 2 in front of
on left-hand-side of the equation.
∴The balanced equation is -
→ 
2. Formation of ammonia
- The formation of ammonia is by reacting nitrogen gas and hydrogen gas.
→ 
Hence, for balancing equation we need to add a coefficient of 3 in front of hydrogen and 2 in front of ammonia.
∴The balanced chemical equation for the formation of ammonia gas is as follows -
→
.
- When 6 moles of
react with 6 moles of
4 moles of ammonia are produced.
The Large intestine absorbs water and vitamin K from digested food.
Answer:
They are composed of hydrogen and helium