<u>Answer:</u> No crystals of potassium sulfate will be seen at 0°C for the given amount.
<u>Explanation:</u>
We are given:
Mass of potassium nitrate = 47.6 g
Mass of potassium sulfate = 8.4 g
Mass of water = 130. g
Solubility of potassium sulfate in water at 0°C = 7.4 g/100 g
This means that 7.4 grams of potassium sulfate is soluble in 100 grams of water
Applying unitary method:
In 100 grams of water, the amount of potassium sulfate dissolved is 7.4 grams
So, in 130 grams of water, the amount of potassium sulfate dissolved will be 
As, the soluble amount is greater than the given amount of potassium sulfate
This means that, all of potassium sulfate will be dissolved.
Hence, no crystals of potassium sulfate will be seen at 0°C for the given amount.
Electrons, specifically valence electrons
Answer:
Bacteria are also involved in many processes that are indispensable for our life on Earth. Many of these processes have to do with the recycling (reuse) of chemical elements that have been here since the formation of the planet
Explanation:
I hope it will help you
⭐Hola User____________
⭐Here is Your Answer...!!!
⭐____________________
SOLUTIONS
↪1) Aqueous Solution
↪2) Solvent
↪3) Solute
_______________________
⚓〽⚓
Answer : The mass of sodium bromide added should be, 18.3 grams.
Explanation :
Molality : It is defined as the number of moles of solute present in kilograms of solvent.
Formula used :

Solute is, NaBr and solvent is, water.
Given:
Molality of NaBr = 0.565 mol/kg
Molar mass of NaBr = 103 g/mole
Mass of water = 315 g
Now put all the given values in the above formula, we get:


Thus, the mass of sodium bromide added should be, 18.3 grams.