Answer:
Dark matter makes up 85% of the mass of the universe. Dark matter is not directly observable because it doesn't interact with any electromagnetic wave. In the development of the universe, without dark matter, the universe will not function, move or rotate as it does now (this speculation led to the quest to find the anomaly of mass and energy in the known universe, eventually leading to the idealization of dark matter) and will not have enough gravitational force to hold it together. After the big bang,<em> the presence of dark matter and energy ensured that the newly formed universe didn't just float away, rather, it provided enough gravitational force to hold the universe while still allowing it to expand sufficiently</em>.
The development of the universe would have been different without the universe in the sense that the young universe won't have enough mass to hold it together, and the universe would have simply floated apart. The behavior of the universe would have been different from what we observe now, and some physical laws that applies now will not apply to the universe.
Answer: Two possible ways to show the structure of CH4 are its electron dot diagram or structural formula. CH4 or methane's molecular formula is given as CH4. The structural formula is a graphical representation of a chemical compound.
Options found from another source are:
a. oxygen. b. glucose. c. energy stored as ATP. d. carbon dioxide and water
Answer:
c energy stored as ATP
Explanation:
Cellular respiration converts glucose into energy in the form of ATP (c). The answer cannot be oxygen (a), because this is required for this process as a final electron acceptor. In terms of photosynthesis, oxygen is released as a by-product. The answer cannot be glucose (b) because that is our starting point for respiration, and what is synthesised during photosynthesis. The answer cannot be (d) as carbon dioxide and water are released by cellular respiration, and required by photosynthesis
Isotope- variation of an element
Sixteen- atomic number of oxygen