Answer:
a process that involves rearrangement of the molecular or ionic structure of a substance, as distinct from a change in physical form or a nuclear reaction
Answer:
Ionic bonds hold charged particles in solid NaCl together, such that they are unable to move or conduct electricity.
Explanation:
Consider an electric current that flows through a conductor: charge moves in a uniform direction from one end of the conductor towards the other.
Thus, there are two conditions for a substance to conduct electricity:
- The substance shall contain charged particles, and
- These charged particles shall be free to move across the substance.
A conductor of electricity shall meet both requirements.
Now, consider the structure of solid NaCl
. NaCl is an ionic compound. It contains an ocean of oppositely charged ions:
- Positive
ions, and - Negative
ions.
Ions carry charge. Thus, solid NaCl contains charged particles and satisfies the first condition.
Inside solid NaCl
, electrostatic attractions ("ionic bonds") between the oppositely charged ions hold these ions in rigid ionic lattices. These ions are unable to move relative to each other. As a result, they cannot flow through the solid to conduct electricity. Under solid state, NaCl is unable to satisfy the second condition.
As a side note, melting NaCl into a liquid breaks the ionic bonds and free the ions from the lattice. Liquid NaCl is a conductor of electricity.
MnCl2(aq) is an ionic compound which will have the releasing of 2 Cl⁻ ions ions in water for every molecule of MnCl2 that dissolves.
MnCl2(s) --> Mn+(aq) + 2 Cl⁻(aq)
[Cl⁻] = 0.92 mol MnCl2/1L × 2 mol Cl⁻ / 1 mol MnCl2 = 1.8 M
The answer to this question is [Cl⁻] = 1.8 M
It’s B the cu looses its 2 and passes it to the NH3 that needs a bracket to separate them. The NH3 doesn’t loose its 3 because it’s already a compound!
Hope this helps!