Your number in decimal form is
3,000,000
.
To get to standard scientific notation, we move the decimal point so there is only one non-zero digit in front of the decimal point.
So,
3,000,000
becomes
3.000,000
.
The trailing zeroes are not significant, so
3.000,000
becomes
3
.
We moved the decimal point six places, so the exponent is
6
.
We moved the decimal point to the left, so the exponent is positive.
The exponential part is therefore
10
6
.
3,000,000=3 X10^6
The answer is in the picture which is given below:
Answer:
sorry i dont know the answer but i hope you can figure it out soon
Answer:
Explanation:
mole of HCl remaining after reaction with CaCO₃
= .3 M of NaOH of 32.47 mL
= .3 x .03247 moles
= .009741 moles
Initial HCl taken = .3 x .005 moles = .0015 moles
Moles of HCl reacted with CaCO₃
= .009741 - .0015 = .008241 moles
CaCO₃ + 2HCl = CaCl₂ + CO₂ + H₂O .
1 mole 2 moles
2 moles of HCl reacts with 1 mole of CaCO₃
.008241 moles of HCl reacts with .5 x .008241 moles of CaCO₃
CaCO₃ reacted with HCl = .5 x .008241 = .00412 moles
the mass (in grams) of calcium carbonate in the tablet
= .00412 x 100 = .412 grams . ( molar mass of calcium carbonate = 100 )
Answer:
T2 = 135.1°C
Explanation:
Given data:
Mass of water = 96 g
Initial temperature = 113°C
Final temperature = ?
Amount of energy transfer = 1.9 Kj (1.9×1000 = 1900 j)
Specific heat capacity of aluminium = 0.897 j/g.°C
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
Now we will put the values in formula.
Q = m.c. ΔT
1900 j = 96 g × 0.897 j/g.°C × T2 - 113°C
1900 j = 86.112 j/°C × T2 - 113°C
1900 j / 86.112 j/°C = T2 - 113°C
22.1°C + 113°C = T2
T2 = 135.1°C