1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
r-ruslan [8.4K]
3 years ago
13

The drag force, Fd, imposed by the surrounding air on a

Engineering
1 answer:
Ad libitum [116K]3 years ago
3 0

Answer:

a)  23.551 hp

b)  516.89 hp

Explanation:

<u>given:</u>

F_{d} =\frac{1}{2} C_{d} A_{p} V^{2} \\V_{a}=25 m/hr-->25*\frac{5280}{3600} =36.67ft/s\\V_{b}=70 m/hr-->70*\frac{5280}{3600} =102.67ft/s\\\\C_{d}=.28\\A=25 ft^2\\p=.075lb/ft^2

<u>required:</u>

the power in hp

<u>solution:</u>

(F_{d})_{a}  =\frac{1}{2} C_{d} A_{p} V_{a} ^{2}.............(1)

by substituting in the equation (1)

         =353.27 lbf

(F_{d})_{b}  =\frac{1}{2} C_{d} A_{p} V_{b} ^{2}..........(2)

by substituting in the equation (2)

         = 2769.29 lbf

power is defined by

             P=F.V

     P_{a}=353.27*36.67

           =12954.411 lbf.ft/s

           =12954.411*.001818

           =23.551 hp

      P_{a}=2769.29*102.67

           = 284323 lbf.ft/s

           = 284323*.001818

           = 516.89 hp

You might be interested in
What is the name for a program based on the way your brain works?
xxMikexx [17]

Answer:

KAT

Explanation:

I believe this is what ur looking for

8 0
3 years ago
Read 2 more answers
Air flows through a 0.25-m-diameter duct. At the inlet the velocity is 300 m/s, and the stagnation temperature is 90°C. If the M
Naddika [18.5K]

Answer:

a. 318.2k

b. 45.2kj

Explanation:

Heat transfer rate to an object is equal to the thermal conductivity of the material the object is made from, multiplied by the surface area in contact, multiplied by the difference in temperature between the two objects, divided by the thickness of the material.

See attachment for detailed analysis

7 0
3 years ago
Water flows through a pipe at an average temperature of T[infinity] = 70°C. The inner and outer radii of the pipe are r1 = 6 cm
Paul [167]

Answer:

The differential equation and the boundary conditions are;

A) -kdT(r1)/dr = h[T∞ - T(r1)]

B) -kdT(r2)/dr = q'_s = 734.56 W/m²

Explanation:

We are given;

T∞ = 70°C.

Inner radii pipe; r1 = 6cm = 0.06 m

Outer radii of pipe;r2 = 6.5cm=0.065 m

Electrical heat power; Q'_s = 300 W

Since power is 300 W per metre length, then; L = 1 m

Now, to the heat flux at the surface of the wire is given by the formula;

q'_s = Q'_s/A

Where A is area = 2πrL

We'll use r2 = 0.065 m

A = 2π(0.065) × 1 = 0.13π

Thus;

q'_s = 300/0.13π

q'_s = 734.56 W/m²

The differential equation and the boundary conditions are;

A) -kdT(r1)/dr = h[T∞ - T(r1)]

B) -kdT(r2)/dr = q'_s = 734.56 W/m²

6 0
3 years ago
Write a program that uses a function called Output_Array_Info. Output_Array_Info Properties: Input Parameters: 1. A pointer to a
Artyom0805 [142]

Answer:

C++ code explained below

Explanation:

Please note the below program has been tested on ubuntu 16.04 system and compiled using g++ compiler. This code will also work on other IDE's

-----------------------------------------------------------------------------------------------------------------------------------

Program:

-----------------------------------------------------------------------------------------------------------------------------------

//header files

#include<iostream>

//namespace

using namespace std;

//function defintion

void Output_Array_Info(int *array_ptr, int size)

{

//display all array elements

cout<<"Array elements are: "<<endl;

for(int i =0; i<size; i++)

{

cout<<*(array_ptr+i)<<endl;

}

//display address of each element

cout<<endl<<"memory address of each array elemnt is: "<<endl;

for(int i =0; i<size; i++)

{

cout<<array_ptr+i<<endl;

}

}

//start of main function

int main()

{

//pointer variables

int *pointer;

//an array

int numbers[] = { 5, 7, 9, 10, 12};

//pointer pointing to array

pointer = numbers;

//calculate the size of the array

int size = sizeof(numbers)/sizeof(int);

//call to function

Output_Array_Info(numbers, size);

return 0;

}

//end of the main program

8 0
3 years ago
Chlorine is one of the important commodity chemicals for the global economy. Before the advent of large scale
artcher [175]

The composition of gas in the feed, the percentage conversion and the

theoretical yield are combined to give the product stream composition.

Response:

The composition of gas in the product stream are;

  • HCl: 0.4 kmol/h, Cl₂: 1.6 kmol/h, H₂O: 1.6 kmol/h, O₂: 0.5 kmol/h

<h3>How can percentage conversion give the contents of the product stream?</h3>

The amount of oxygen used = 30% exceeding the theoretical amount

Number of moles of hydrochloric acid = 4 kmol/h

Percentage conversion = 80%

Required:

The composition of the gas in the product feed.

Solution;

The given reaction is; 4HCl + O₂ \longrightarrow 2Cl₂ + 2H₂O

Percentage \ conversion = \mathbf{ \dfrac{Moles \ of \ limiting \ reactant \ reacted}{Moles \  of \ limiting \ reactant \ supplied \ in \ the \, feed}}

Which gives;

80 \% = \mathbf{ \dfrac{Moles \ of \ limiting \ reactant \ reacted}{4 \, kmol/h}}

Moles of limiting reactant reacted = 4 kmol/h × 0.80 = 3.6 kmol/h

Which gives;

Number of moles of HCl in the stream = 4 kmol/h - 3.6 kmol/h = 0.4 kmol/h

Number of moles of Cl₂ produced = 2 kmol/h × 0.8 = 1.6 kmol/h

Similarly;

Number of moles of H₂O produced = 2 kmol/h × 0.8 = 1.6 kmol/h

Number of moles of O₂ in the product stream = 30% × 1 kmol/h + 20% × 1 kmol/h = 0.5 kmol/h

The composition of the production stream is therefore;

  • <u>HCl: 0.4 kmol/h</u>
  • <u>Cl₂: 1.6 kmol/h</u>
  • <u>H₂O: 1.6 kmol/h</u>
  • <u>O₂: 0.5 kmol/h</u>

Learn more about theoretical and actual yield here:

brainly.com/question/14668990

brainly.com/question/82989

7 0
3 years ago
Other questions:
  • Two infinite extent current sheets exist at z = −3.0 m and at z = +3.0 m. The top sheet has a uniform current
    11·1 answer
  • A 356 cast aluminum test bar is tested in tension. The initial gage length as marked on the sample is 50mm and the initial diame
    9·1 answer
  • A three-phase transformer bank consists of 3 single-phase transformers to handle 400 kVA witha 34.5kV/13.8kV voltage ratio. Find
    7·1 answer
  • Assume a steel pipe of inner radius r1= 20 mm and outer radius r2= 25 mm, which is exposed to natural convection at h = 50 W/m2.
    12·1 answer
  • 3. (20 points) Suppose we wish to search a linked list of length n, where each element contains a key k along with a hash value
    7·1 answer
  • The coefficient of performance of a reversible refrigeration cycle is always (a) greater than, (b) less than, (c) equal to the c
    12·1 answer
  • When Hailey participated in a tree plantation drive, she wore her most comfortable loungewear. However, the same attire was not
    11·1 answer
  • A thin 20-cm*20-cm flat plate is pulled at 1m/s horizontally through a 4-mm thick oil layer sandwiched between two stationary pl
    15·1 answer
  • The stagnation chamber of a wind tunnel is connected to a high-pressure airbottle farm which is outside the laboratory building.
    11·1 answer
  • 11. What are restrictions when building or completing a challenge?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!