1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
r-ruslan [8.4K]
2 years ago
13

The drag force, Fd, imposed by the surrounding air on a

Engineering
1 answer:
Ad libitum [116K]2 years ago
3 0

Answer:

a)  23.551 hp

b)  516.89 hp

Explanation:

<u>given:</u>

F_{d} =\frac{1}{2} C_{d} A_{p} V^{2} \\V_{a}=25 m/hr-->25*\frac{5280}{3600} =36.67ft/s\\V_{b}=70 m/hr-->70*\frac{5280}{3600} =102.67ft/s\\\\C_{d}=.28\\A=25 ft^2\\p=.075lb/ft^2

<u>required:</u>

the power in hp

<u>solution:</u>

(F_{d})_{a}  =\frac{1}{2} C_{d} A_{p} V_{a} ^{2}.............(1)

by substituting in the equation (1)

         =353.27 lbf

(F_{d})_{b}  =\frac{1}{2} C_{d} A_{p} V_{b} ^{2}..........(2)

by substituting in the equation (2)

         = 2769.29 lbf

power is defined by

             P=F.V

     P_{a}=353.27*36.67

           =12954.411 lbf.ft/s

           =12954.411*.001818

           =23.551 hp

      P_{a}=2769.29*102.67

           = 284323 lbf.ft/s

           = 284323*.001818

           = 516.89 hp

You might be interested in
Water vapor at 10bar, 360°C enters a turbine operatingat steady state with a volumetric flow rate of 0.8m3/s and expandsadiabati
Artyom0805 [142]

Answer:

A) W' = 178.568 KW

B) ΔS = 2.6367 KW/k

C) η = 0.3

Explanation:

We are given;

Temperature at state 1;T1 = 360 °C

Temperature at state 2;T2 = 160 °C

Pressure at state 1;P1 = 10 bar

Pressure at State 2;P2 = 1 bar

Volumetric flow rate;V' = 0.8 m³/s

A) From table A-6 attached and by interpolation at temperature of 360°C and Pressure of 10 bar, we have;

Specific volume;v1 = 0.287322 m³/kg

Mass flow rate of water vapour at turbine is defined by the formula;

m' = V'/v1

So; m' = 0.8/0.287322

m' = 2.784 kg/s

Now, From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific enthalpy;h1 = 3179.46 KJ/kg

Now, From table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific enthalpy;h2 = 3115.32 KJ/kg

Now, since stray heat transfer is neglected at turbine, we have;

-W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2 - h1)

Plugging in relevant values, the work of the turbine is;

W' = -2.784(3115.32 - 3179.46)

W' = 178.568 KW

B) Still From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific entropy: s1 = 7.3357 KJ/Kg.k

Still from table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific entropy; s2 = 8.2828 KJ/kg.k

The amount of entropy produced is defined by;

ΔS = m'(s2 - s1)

ΔS = 2.784(8.2828 - 7.3357)

ΔS = 2.6367 KW/k

C) Still from table A-6 attached and by interpolation at state 2 with s2 = s2s = 8.2828 KJ/kg.k and Pressure of 1 bar, we have;

h2s = 2966.14 KJ/Kg

Energy equation for turbine at ideal process is defined as;

Q' - W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Again, Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2s - h1)

W' = -2.784(2966.14 - 3179.46)

W' = 593.88 KW

the isentropic turbine efficiency is defined as;

η = W_actual/W_ideal

η = 178.568/593.88 = 0.3

8 0
3 years ago
In the final stages of production, a pharmaceutical is sterilized by heating it from 25 to 75°C as it moves at 0.2 m/s through a
stepan [7]

Answer:

The required heat flux = 12682.268 W/m²

Explanation:

From the given information:

The initial = 25°C

The final = 75°C

The volume of the fluid = 0.2 m/s

The diameter of the steel tube = 12.7 mm = 0.0127 m

The fluid properties for density \rho = 1000 kg/m³

The mass flow rate of the fluid can be calculated as:

m = pAV

m = \rho \dfrac{\pi}{4}D^2V

m = 1000 \times \dfrac{\pi}{4} \times ( 0.0127)^2 \times 0.2

m = 0.0253 \ kg/s

To estimate the amount of the heat by using the expression:

q = mc_p(T_{final}-T_{initial})

q = 0.0253 × 4000(75-25)

q = 101.2 (50)

q = 5060 W

Finally, the required heat of the flux is determined by using the formula:

q" = \dfrac{q}{A_s}

q" = \dfrac{q}{\pi D L}

q" = \dfrac{5060}{\pi \times 0.0127 \times 10}

q" =  12682.268 W/m²

The required heat flux = 12682.268 W/m²

3 0
3 years ago
Technician A says that weld-on dent removal attachments may be used on a steel panel.
spin [16.1K]

Answer:

sjasfjajfhajshfdff

Explanation:

7 0
2 years ago
A single-degree-of-freedom mass-spring-damper system is observed during its free vibration and the displacement amplitude decays
AleksandrR [38]

Answer:

Logarithmic decrement is equal to 0.182

Explanation:

given,

amplitude decay = 9 dB          

number of cycles = 12 cycles        

mass of the system = 7 kg        

spring stiffness = 3000 N/m            

logarithmic decrement = ?                  

now,                                                      

logarithmic decreament = ln\ D^{\frac{1}{n}}

                                        = ln\ 9^{\frac{1}{12}}

                                        =ln (1.2)

                                        = 0.182

Hence, Logarithmic decrement is equal to 0.182

5 0
3 years ago
(a) The reverse-saturation current of a pn junction diode is IS = 10−11 A. Determine the diode voltage to produce currents of (i
kirill115 [55]

Answer:

The equation used to solve a diode is

i_d = I_se^\frac{V_d}{V_T}-1

  • i_d is the current going through the diode
  • I_s is your saturation current
  • V_D is the voltage across your diode
  • V_T is the voltage of the diode at a certain room temperature. by default, you always use V_T=25.9mV for room temperature.

If you look at the equation, i_d = I_se^\frac{V_d}{V_T}-1, you'd notice that the e^\frac{V_d}{V_T} grow exponentially fast, so we can ignore the -1 in the equation because it's so small compared to the exponential.

i_d = I_se^\frac{V_d}{V_T}-1

i_d\approx I_se^\frac{V_d}{V_T}

Therefore, use i_d= I_se^\frac{V_d}{V_T} to solve your equation.

Rearrange your equation to solve for V_D.

V_D=V_Tln(\frac{i_D}{I_s})

a.)

i.)

You're given I_s=10^{-11}A

at i_d=10\mu A,     V_D=V_Tln(\frac{i_D}{I_s})=(25.9\cdot10^{-3})ln(\frac{10\cdot10^{-6}}{10\cdot10^{-11}})=.298V

at i_d=100\mu A,   V_D=V_Tln(\frac{i_D}{I_s})=(25.9\cdot10^{-3})ln(\frac{100\cdot10^{-6}}{10\cdot10^{-11}})=.358V

at i_d=1mA,      V_D=V_Tln(\frac{i_D}{I_s})=(25.9\cdot10^{-3})ln(\frac{1\cdot10^{-3}}{10\cdot10^{-11}})=.417V

<em>note: always use</em>  V_T=25.9mV

ii.)

Just repeat part (i) but change to I_s=-5\cdot10^{-12}A

b.)

same process as part A. You do the rest of the problem by yourself.

4 0
3 years ago
Other questions:
  • Which term defines the amount of mechanical work an engine can do per unit of heat energy it uses?
    5·1 answer
  • LC3 Programming ProblemUse .BLKW to set up an array of 10 values, starting at memory location x4000, as in lab 4.Now programmati
    12·1 answer
  • 1. How many types of pumps are present?​
    14·1 answer
  • Water is pumped from one large reservoir to another at a higher elevation. If the flow rate is 2.5 ft3 /s and the pump delivers
    12·1 answer
  • Impact strips may be designed into a bumper cover.<br> True<br> False
    14·1 answer
  • The water behind Hoover Dam in Nevada is 221 m higher than the Colorado River below it. At what rate must water pass through the
    6·1 answer
  • A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16
    8·1 answer
  • An ideal gas is contained in a closed assembly with an initial pressure and temperature of
    14·1 answer
  • 6.) ___________ is a disadvantage of local storage since it can be very expensive.
    5·1 answer
  • Which type of system is being researched to deliver power to several motors to drive multiple systems in vehicles?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!