Surface tension is a property of a liquid to resist the external force. It is the result of cohesive forces between the molecules of the liquid.
The stronger the cohesive forces between the molecules of the liquid, the stronger is the surface tension.
Since methylated spirit has weaker cohesive forces than water, it will also have a weaker surface tension.
Answer:
Reliability is typically shown as a reliability coefficient created in a calculation to determine the reliability, or consistency, of scores, such as a measure of the amount of consistency between two sets of scores from different administrations from the same group of students.
Answer:

Explanation:
It is given that,
Mass of the baseball, m = 0.14 kg
It is dropped form a height of 1.8 m above the ground. Let u is the velocity when it hits the ground. Using the conservation of energy as :

h = 1.8 m

u = 5.93 m/s
Let v is the speed of the ball when it rebounds. Again using the conservation of energy to find it :

h' = 1.4 m

v = -5.23 m/s
The change in the momentum of the ball is given by :



So, the change in the ball's momentum occurs when the ball hits the ground is 1.56 kg-m/s. Hence, this is the required solution.
Answer:
True.
Explanation:
A diode, which allows current to flow in one direction only, consists of two types of semiconductors joined together.
A semiconductor can be defined as a crystalline solid substance that has its conductivity lying between that of a metal and an insulator, due to the effects of temperature or an addition of an impurity. Semiconductors are classified into two main categories;
1. Extrinsic semiconductor.
2. Intrinsic semiconductor.
An intrinsic semiconductor is a crystalline solid substance that is in its purest form and having no impurities added to it. Examples of intrinsic semiconductor are Germanium and Silicon.
In an intrinsic semiconductor, the number of free electrons is equal to the number of holes. Also, in an intrinsic semiconductor the number of holes and free electrons is directly proportional to the temperature; as the temperature increases, the number of holes and free electrons increases and vice-versa.
In an intrinsic semiconductor, each free electrons (valence electrons) produces a covalent bond.