Answer:
HF
Explanation:
This concept can be understood from the knowledge of Intermolecular forces of attraction.
Intermolecular bonds are Van der Waals forces which are weak forces of attraction joining non-polar and polar molecules together. They exist in the form of London Dispersion Forces and Dipole-dipole attraction.
An example of Dipole-dipole attraction is the hydrogen bond which is a unique dipole-dipole attraction between polar molecules in which a hydrogen atom is directly joined to a highly electronegative atom such as fluorine, oxygen, or nitrogen).
Molecules that possess the characteristics of hydrogen bonding have a higher boiling point. In the given question, only HF undergo hydrogen bond due to the electronegative effect of the fluorine element.
F2 occurs as a weak London dispersion force and it occurs between non-polar molecules.
Answer:
Explanation:
1)
Given data:
Initial volume of balloon = 0.8 L
Initial temperature = 12°C ( 12+273= 285 K)
Final temperature = 300°C (300+273 = 573 K)
Final volume = ?
Solution:
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 0.8 L .573 K / 285 K
V₂ = 458.4 L / 285
V₂ = 1.61 L
2)
Initial pressure = 204 kpa
Initial temperature = 29°C ( 29 + 273 = 302 K)
Final temperature = ?
Final pressure = 300 kpa
Solution:
P₁/T₁ = P₂/T₂
T₂ = T₁P₂/P₁
T₂ = 302 K . 300 kpa / 204 kpa
T₂ = 90600 K/ 204
T₂ = 444.12 K
3)
Given data:
Initial volume = 14 L
Initial pressure = 2.1 atm
Initial temperature = 100 K
Final temperature = 450 K
Final volume = ?
Final pressure = 1.2 atm
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 2.1 atm × 14 L × 450 K / 100 K × 1.2 atm
V₂ = 13230 L / 120
V₂ = 110.25 L
It is c I hope I helped out with this question!.