Answer:
0.302 moles
Explanation:
Data given
Mass of Pb(NO₃)₂ = 100 g
Moles of Pb(NO₃)₂ = ?
Solution:
To find mole we have to know about molar mass of Pb(NO₃)₂
So,
Molar mass of Pb(NO₃)₂ = 207 + 2[14 + 3(16)]
= 207 + 2[14 + 48]
= 207 + 124
Molar mass of Pb(NO₃)₂ = 331 g/mol
Formula used :
no. of moles = mass in grams / molar mass
Put values in above formula
no. of moles = 100 g / 331 g/mol
no. of moles = 0.302 moles
no. of moles of Pb(NO₃)₂ = 0.302 moles
The characteristics of the α and β particles allow to find the design of an experiment to measure the ²³⁴Th particles is:
-
On a screen, measure the emission as a function of distance and when the value reaches a constant, there is the beta particle emission from ²³⁴Th.
- The neutrons cannot be detected in this experiment because they have no electrical charge.
In Rutherford's experiment, the positive particles directed to the gold film were measured on a phosphorescent screen that with each arriving particle a luminous point is seen.
The particles in this experiment are α particles that have two positive charge and two no charged is a helium nucleus.
The test that can be carried out is to place a small ours of Thorium in front of a phosphorescent screen and see if it has flashes, with the amount of them we can determine the amount of particle emitted per unit of time.
Thorium has several isotopes, with different rates and types of emission:
- ²³²Th emits α particles, it is the most abundant 99.9%
- ²³⁴Th emits β particles, exists in small traces.
In this case they indicate that the material used is ²³⁴Th, which emits β particles that are electrons, the detection of these particles is more difficult since it has one negative charge, it has much lower mass, but they can travel further than the particles α, therefore, for what type of isotope we have, we can start measuring at a small distance and increase the distance until the reading is constant. At this point all the particles that arrive are β, which correspond to ²³⁴Th.
Neutron detection is much more difficult since these particles have no charge and therefore do not interact with electrons and no flashing on the screen is varied.
In conclusion with the characteristics of the α and β particles we can find the design of an experiment to measure the ²³⁴Th particles is:
-
On a screen, measure the emission as a function of distance and when the value reaches a constant, there is the β particle emission from ²³⁴Th.
- The neutrons cannot be detected in this experiment because they have no electrical charge.
Learn more about radioactive emission here: brainly.com/question/15176980
Answer:
Advantakes= it is a renewable source, you can but it anywhere with sunlight
disatvantage= it cost a lot to place/replace, it uses a lot of different materials
Answer:
Answers in explanation.
Explanation:
30. A (A chemical changes changes the chemical properties)
31. C (rusting is an example of a chemical change
32. B (A reaction requires energy, so some energy will be expelled)
33. B (Color change is an example of a chemical change)
34. A (The law of the conservation of mass: Mass and Energy cannot be created nor destroyed)
Lol ok ill help the answer is true and she SHOULDNT be mad at you