Answer:
Explanation:
kinetic energy=1/2*mass*velocity^2
=1/2*14kg*10^2
=7*100
=700 joule
Answer:
the distance traveled by Charlotte in feet is 338.44 ft
Explanation:
Given;
speed of Charlotte, u = 66.5 mi/h
time of motion, t = 3.47 s
The distance traveled by Charlotte in feet is calculated as;

Therefore, the distance traveled by Charlotte in feet is 338.44 ft
Answer:
The final speed of puck 1 is 0.739 m/s towards west and puck 2 is 2.02 m/s towards east .
Explanation:
Let us consider east as positive direction and west as negative direction .
Given
mass of puck 1 , 
mass of puck 2 , 
initial speed of puck 1 , 
initial speed of puck 2 , 
Final speed of puck 1 and puck 2 be
respectively
Apply conservation of linear momentum

=>
=>
-----(A)
Since collision is perfectly elastic , coefficient restitution e=1

=>
------(B)
From equation (A) and (B)

and 
Thus the final speed of puck 1 is 0.739 m/s towards west and puck 2 is 2.02 m/s towards east .
Answer:
1. Torque → F. Study of forces
2. C.O.G → D. Point of action of weight.
3. Plumb line → A. Line of C.O.G
Answer:
a = 2.72 [m/s2]
Explanation:
To solve this problem we must use the following kinematics equation:

where:
Vf = final velocity = 1200 [km/h]
Vo = initial velocity = 25 [km/h]
t = time = 2 [min] = 2/60 = 0.0333 [h]
1200 = 25 + (a*0.0333)
a = 35250.35 [km/h2]
if we convert these units to units of meters per second squared
![35250.35[\frac{km}{h^{2} }]*(\frac{1}{3600^{2} })*[\frac{h^{2} }{s^{2} } ]*(\frac{1000}{1} )*[\frac{m}{km} ] = 2.72 [\frac{m}{s^{2} } ]](https://tex.z-dn.net/?f=35250.35%5B%5Cfrac%7Bkm%7D%7Bh%5E%7B2%7D%20%7D%5D%2A%28%5Cfrac%7B1%7D%7B3600%5E%7B2%7D%20%7D%29%2A%5B%5Cfrac%7Bh%5E%7B2%7D%20%7D%7Bs%5E%7B2%7D%20%7D%20%5D%2A%28%5Cfrac%7B1000%7D%7B1%7D%20%29%2A%5B%5Cfrac%7Bm%7D%7Bkm%7D%20%5D%20%3D%202.72%20%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D%20%5D)