We know V=IR (Ohm's law).
We are given R=180Ω and I=0.1A, then V=(0.1AΩ)(180Ω). Therefore
V=18V
Answer:

where E = electric field intensity
Explanation:
As we know that plastic ball is suspended by a string which makes 30 degree angle with the vertical
So here force due to electrostatic force on the charged ball is in horizontal direction along the direction of electric field
while weight of the ball is vertically downwards
so here we have


since string makes 30 degree angle with the vertical so we will have





where E = electric field intensity
Helium (He) does not have the same number of valence electrons as other elements in its group.
The periodic table is divided into groups with the last number of the group coinciding with the number of electrons that an element in the group has in its outermost or valence shell.
Helium is in group 18 which means that it should have the same number of valence electrons as :
- Neon
- Argon
- Krypton
- Xenon and,
- Radon
Yet Helium only has 2 valence electrons. We can therefore conclusively say that Helium does not have the same number of valence electrons as other elements in its group.
<em>More information is available at brainly.com/question/20944279. </em>
Answer:
Hans Christian Oersted began a new scientific epoch when he discovered that electricity and magnetism are linked. He showed by experiment that an electric current flowing through a wire could move a nearby magnet. The discovery of electromagnetism set the stage for the eventual development of our modern technology-based world.
Explanation:
The popular GPS devices that people use to find directions while driving use "Global Navigation Satellite System (GNSS)".
<u>Explanation:</u>
The umbrella term for all global satellite tracking systems is GNSS i.e Global Satellite Navigation System. This involves satellite constellations circulating over the surface of the earth and continuous signal transmission that allow users to evaluate their location.
A satellite array of 18–30 medium Earth Orbit (MEO) satellites distributed across several orbital planes typically achieves greater coverage for each network. The specific systems differ, but use > 50 ° orbital inclinations and approximately twelve hours orbital cycles.