Answer:

Explanation:
In a uniform circular motion, since a complete revolution represents 2π radians, the angular velocity, which is defined as the angle rotated by a unit of time, is given by:

Here T is the period, that is, the time taken to complete onee revolution:

Replacing (2) in (1):

Answer:
23.5 mV
Explanation:
number of turn coil 'N' =22
radius 'r' =3.00 cm=>
0.03m
resistance = 1.00 Ω
B= 0.0100t + 0.0400t²
Time 't'= 4.60s
Note that Area'A' = πr²
The magnitude of induced EMF is given by,
lƩl =ΔφB/Δt = N (dB/dt)A
=N[d/dt (0.0100t + 0.0400 t²)A
=22(0.0100 + 0.0800(4.60))[π(0.03)²]
=0.0235
=23.5 mV
Thus, the induced emf in the coil at t = 4.60 s is 23.5 mV
Explanation:
B. All use generators to produce electrical current
Answer:
1716.75 J
Explanation:
<u>Step </u><u>1</u><u>:</u> First check what we are provided with. As per given question we have:
mass (m) = 70 kg, height (h) = 2.5 m and acceleration due to gravity (g) = 9.81 m/s².
<u>Step</u><u> </u><u>2</u><u>:</u> Check what we are asked to find out.
Work done = Change in Potential energy
The stuff required to solve this question is potential energy. Using the formula: P = mgh. Where P is Potential energy, m is mass, g is acceleration due to gravity and h is height.
<u>Step</u><u> </u><u>3</u><u>:</u> Substitute the known values in the above formula.
→ P = 70 × 2.5 × 9.81
→ P = 1716.75 J
Hence, the work done against the force of gravity is 1716.75 J.