Main Answer: The standard electrode potential of galvanic cell constructed from barium and manganese electrode is 4.097.
Explanation:
When the galvanic cell constructed between Manganese and Barium, the half reactions will be as follows:
Mn2+(aq) + 2e-⟶ Mn(s) E1 = −1.185
Ba2+(aq) + 2e-⟶ Ba(s) E2 = −2.912
By considering the above two reactions, the standard electrode potential can be calculated.
The galvanic cell standard electrode potential is given by E1 + E2 = 1.185 + 2.912 = 4.097 volts
What is standard electrode potential?
Standard electrode potential is defined as the measure of reducing power of any compound or element. Its units are volts.
To know more about galvanic cell, please visit:
brainly.com/question/13031093
#SPJ4
The correct answer is 12.044 × 10²³ molecules.
The molecular mass of H₂S is 34 gram per mole.
Number of moles is determined by using the formula,
Number of moles = mass/molecular mass
Given mass is 68 grams, so no of moles will be,
68/34 = 2 moles
1 mole comprises 6.022 × 10²³ molecules, therefore, 2 moles will comprise = 6.022 × 10²³ × 2
= 12.044 × 10²³ molecules.
Copper II oxide is a compound.
Answer:
a. 58.5 g/mol
b. 0.1 mol
Explanation:
a.
The molar mass of Na is 23.0 g/mol. The molar mass of Cl is 35.5 g/mol. The molar mass of NaCl is:
M(Na) + M(Cl) = 23.0 g/mol + 35.5 g/mol = 58.5 g/mol
b. A healthy adult should eat no more than 6 g of salt in one day. The moles corresponding to 6 g of NaCl are:
6 g × (1 mol/58.5 g) = 0.1 mol