The answer is false , because they move without an electromagnetic
Answer:
106.7 N
Explanation:
We can solve the problem by using the impulse theorem, which states that the product between the average force applied and the duration of the collision is equal to the change in momentum of the object:

where
F is the average force
is the duration of the collision
m is the mass of the ball
v is the final velocity
u is the initial velocity
In this problem:
m = 0.200 kg
u = 20.0 m/s
v = -12.0 m/s

Solving for F,

And since we are interested in the magnitude only,
F = 106.7 N
Answer:
The energy in its ground state is 10 meV.
Explanation:
It is given that,
The energy of the electron in its first excited state is 40 meV.
Energy of the electron in any state is given by :

For ground state, n = 1
.............(1)
For first excited state, n = 2
.............(2)
Dividing equation (1) and (2), we get :


So, the energy in its ground state is 10 meV. Hence, this is the required solution.
Answer:
B. The truck and mosquito exert the same size force on each other.
Explanation:
Newton's third law (law of action-reaction) states that
"When an object A exerts a force (action) on an object B, then object B exerts an equal and opposite force (reaction) on object A"
In this case, we can call
object A = the truck
object B = the mosquito
Thereforce according to Newton's third law, the force exerted by the truck on the mosquito is equal in magnitude to the force exerted by the mosquito on the truck (and in opposite direction).
The reason for which the mosquito will experience much more damage is the fact that the mosquito's mass is much smaller than the truck's mass, and since the acceleration is inversely proportional to the mass:

the mosquito will experience a much larger deceleration than the truck, therefore much more damage.