1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zolol [24]
3 years ago
6

The reflective surface of a CD consists of spirals of equally spaced grooves. If you shine a laser pointer on a CD, each groove

reflects circular waves that look exactly like the circular waves transmitted by the slits in a grating. You shine a green laser pointer (λ = 532 nm) perpendicularly to the surface of a CD and observe a diffraction pattern on a screen that is 3.0 m away from the CD. You observe that the 1st order maximum (m = 1) appears 1.1 m away from the central maximum (m = 1).
Determine the distance between the adjacent grooves on a CD.

Physics
1 answer:
Ipatiy [6.2K]3 years ago
3 0

Answer:

d = 1.55 * 10⁻⁶ m

Explanation:

To calculate the distance between the adjacent grooves of the CD, use the formula, d = \frac{m \lambda}{sin(A_{m}) }..........(1)

The fringe number, m = 1 since it is a first order maximum

The wavelength of the green laser pointer, \lambda = 532 nm = 532 * 10⁻⁹ m

Distance between the central maximum and the first order maximum = 1.1 m

Distance between the screen and the CD = 3 m

A_{m} = Angle between the incident light and the diffracted light

From the setup shown in the attachment, it is a right angled triangle in which

sin(A_{m}) = \frac{opposite}{Hypotenuse} \\sin(A_{m}) =\frac{1.1}{\sqrt{1.1^{2}+3^{2}}}

sin(A_{m} ) = 0.344\\A_{m} = sin^{-1} 0.344\\A_{m} = 20.14^{0}

Putting all appropriate values into equation (1)

d = \frac{1* 532*10^{-9} }{0.344 }\\d = 0.00000155 m\\d = 1.55 * 10^{-6} m

You might be interested in
if a negatively charged rod is held near a neutral metal ball, the ball is attracted to the rod. this happens because
svet-max [94.6K]
This is because opposite charges attract
3 0
3 years ago
Electrons do not move unless they are attracted to an electromagnet <br><br> True or false
Tpy6a [65]

The answer is false , because they move without an electromagnetic

3 0
3 years ago
Read 2 more answers
. During a collision with a wall, the velocity of a 0.200-kg ball changes from 20.0 m/s toward the wall to 12.0 m/s away from th
mixer [17]

Answer:

106.7 N

Explanation:

We can solve the problem by using the impulse theorem, which states that the product between the average force applied and the duration of the collision is equal to the change in momentum of the object:

F \Delta t = m (v-u)

where

F is the average force

\Delta t is the duration of the collision

m is the mass of the ball

v is the final velocity

u is the initial velocity

In this problem:

m = 0.200 kg

u = 20.0 m/s

v = -12.0 m/s

\Delta t = 60.0 ms = 0.06 s

Solving for F,

F=\frac{m(v-u)}{\Delta t}=\frac{(0.200 kg) (-12.0 m/s-20.0 m/s)}{0.06 s}=-106.7 N

And since we are interested in the magnitude only,

F = 106.7 N

5 0
3 years ago
Read 2 more answers
An electron is confined to a one dimensional region, bounded by an infinite potential. If the energy of the electron in its firs
OLga [1]

Answer:

The energy in its ground state is 10 meV.

Explanation:

It is given that,

The energy of the electron in its first excited state is 40 meV.

Energy of the electron in any state is given by :

E=\dfrac{n^2\pi^2h^2}{8mL^2}

For ground state, n = 1

E_1=\dfrac{\pi^2h^2}{8mL^2}.............(1)

For first excited state, n = 2

40=\dfrac{2^2\pi^2h^2}{8mL^2}.............(2)

Dividing equation (1) and (2), we get :

\dfrac{E_1}{40}=\dfrac{1}{4}

E_1=10\ meV

So, the energy in its ground state is 10 meV. Hence, this is the required solution.

4 0
3 years ago
A truck traveling down the highway collides with a slower moving mosquito traveling in the same direction. Which of the followin
Ipatiy [6.2K]

Answer:

B. The truck and mosquito exert the same size force on each other.

Explanation:

Newton's third law (law of action-reaction) states that

"When an object A exerts a force (action) on an object B, then object B exerts an equal and opposite force (reaction) on object A"

In this case, we can call

object A = the truck

object B = the mosquito

Thereforce according to Newton's third law, the force exerted by the truck on the mosquito is equal in magnitude to the force exerted by the mosquito on the truck (and in opposite direction).

The reason for which the mosquito will experience much more damage is the fact that the mosquito's mass is much smaller than the truck's mass, and since the acceleration is inversely proportional to the mass:

a=\frac{F}{m}

the mosquito will experience a much larger deceleration than the truck, therefore much more damage.

6 0
3 years ago
Other questions:
  • A 10-kg dog is running with a speed of 5.0 m/s. what is the minimum work required to stop the dog in 2.40 s?
    7·1 answer
  • f a wave has a wavelength of 9 meters and a period of 0.006, what is the velocity of the wave? A. 1,200 m/s B. 1,500 m/s C. 1,80
    12·2 answers
  • How can you use your personal choices to exercise more safely
    5·1 answer
  • Please send help my way. 10 points to the brainliest
    5·1 answer
  • Arace car starts from rest and accelerates uniformly to a speed of 40 m/s in 8.
    8·1 answer
  • Monochromatic light of variable wavelength is incident normally on a thin sheet of plastic film in air. The reflected light is a
    10·1 answer
  • Microwelds are formed where
    8·2 answers
  • It is night. Someone who is 4 feet tall is walking away from a street light at a rate of 8 feet per second. The street light is
    14·1 answer
  • In your own words, describe why melting ice with salt freezes cream. Compare your descriptions to your classmates and describe h
    8·1 answer
  • What is the braking force needed to bring a 15kg car going 35 m/s to a complete stop in 5s?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!