Answer:
The lowest possible frequency of sound for which this is possible is 1307.69 Hz
Explanation:
From the question, Abby is standing 5.00m in front of one of the speakers, perpendicular to the line joining the speakers.
First, we will determine his distance from the second speaker using the Pythagorean theorem
l₂ = √(2.00²+5.00²)
l₂ = √4+25
l₂ = √29
l₂ = 5.39 m
Hence, the path difference is
ΔL = l₂ - l₁
ΔL = 5.39 m - 5.00 m
ΔL = 0.39 m
From the formula for destructive interference
ΔL = (n+1/2)λ
where n is any integer and λ is the wavelength
n = 1 in this case, the lowest possible frequency corresponds to the largest wavelength, which corresponds to the smallest value of n.
Then,
0.39 = (1+ 1/2)λ
0.39 = (3/2)λ
0.39 = 1.5λ
∴ λ = 0.39/1.5
λ = 0.26 m
From
v = fλ
f = v/λ
f = 340 / 0.26
f = 1307.69 Hz
Hence, the lowest possible frequency of sound for which this is possible is 1307.69 Hz.
Kepler's 3rd law is given as
P² = kA³
where
P = period, days
A = semimajor axis, AU
k = constant
Given:
P = 687 days
A = 1.52 AU
Therefore
k = P²/A³ = 687²/1.52³ = 1.3439 x 10⁵ days²/AU³
Answer: 1.3439 x 10⁵ (days²/AU³)
Answer:
It should be A. Disturbance that travels through a medium or space, transmitting energy from one point to another.
I hope this helped you :)
Answer:
final velocity will be44.72m/s
Explanation:
HEIGHT=h=100m
vi=0m/s
vf=?
g=10m/s²
by using third equation of motion for bodies under gravity
2gh=(vf)²-(vi)²
evaluating the formula
2(10m/s²)(100m)=vf²-(0m/s)²
2000m²/s²=vf²
√2000m²/s²=√vf²
44.72m/s=vf
Answer:
the atomic mass is 11
Explanation:
the atomic mass is basically how many protons and neutrons there are so for this all you have to do is some simple math:
5 + 6 = 11
and boom, ur atomic mass is equal to 11!