Answer:
Thomson's cathode-ray tube experiments led him to develop the plum-pudding model, which stated that each atom had positively charged particles spread throughout its negatively charged matter. Reword the statement so it is true. ... More alpha particles were deflected than he expected.
Explanation:
Well.. I hope it helps you..
Just correct me if I'm wrong..
Answer:
e. The net magnetic flux in this case would be equal to zero.
Explanation:
As per Gauss law of magnetism we need to find the net magnetic flux through a closed loop
here we know that net magnetic flux is the scalar product of magnetic field vector and area vector
so here we have
= net magnetic flux
since we know that magnetic field always forms closed loop so if we find the integral over a closed loop
then in that case the value of the close integral must be zero
so correct answer would be
e. The net magnetic flux in this case would be equal to zero.
Linear expansivity is a type of thermal expansion. It is described by a fraction that represents the fractional increase in length of a thin beam of a material exposed to a temperature increase of one degree Celsius. ... Linear expansivity is used in many real world applications.
Answer:
The original dimensions of the building is 95 ft × 38 ft.
Explanation:
Let the original length be 'l' and original width be 'w'.
Given:
Original length (l) = 
Original width = 'w'.
So, 
Now, as per question:
Length and width is increased by 7 ft.
So, new length (l') = 
New width (w') = 
New perimeter (P) = 266 ft
Perimeter is given as:

Therefore, original width = 38 ft.
Original length is, 
Hence, the original dimensions of the building is 95 ft × 38 ft.
Explanation:
Mass and energy are closely related. Due to mass–energy equivalence, any object that has mass when stationary (called rest mass) also has an equivalent amount of energy whose form is called rest energy, and any additional energy (of any form) acquired by the object above that rest energy will increase the object's total mass just as it increases its total energy. For example, after heating an object, its increase in energy could be measured as a small increase in mass, with a sensitive enough scale.