Answer: v = 
Explanation: q = magnitude of electronic charge = 
mass of an electronic charge =
V= potential difference = 4V
v = velocity of electron
by using the work- energy theorem which states that the kinetic energy of the the electron must equal the work done use in accelerating the electron.
kinetic energy =
, potential energy = qV
hence, 

Answer:0.669
Explanation:
Given
mass of clock 93 kg
Initial force required to move it 610 N
After clock sets in motion it requires a force of 514 N to keep moving it with a constant velocity
Initially static friction is acting which is more than kinetic friction
thus 613 force is required to overcome static friction


when the apple moves in a horizontal circle, the tension force in the string provides the necessary centripetal force to move in circle. the tension in the string is given as
T=mv²/r
where T = tension force in the string , m = mass of the apple
v = speed of apple , r = radius of circle.
clearly , tension force depends on the square of the speed. hence greater the speed, greater will be the tension force.
at some point , the speed becomes large enough that it makes the tension force in the string becomes greater than the tensile strength of the string. at that point , the string breaks
A velocidade mínima é 0. A velocidade máxima é inferior ou igual a 620 km/h.
<span>buena suerte mi amigo</span>
Answer:
1.85 J/K
Explanation:
The computation of total change in entropy is shown below:-
Change in Entropy = Sum Q ÷ T
= 

= -3.12 + 4.97
= 1.85 J/K
Therefore for computing the total change in entropy we simply applied the above formula.
As we can see that there is heat entering the reservoir so it will be negative while cold reservoir will be positive else the process would be impossible.