Answer:
660 J/kg/°C
Explanation:
Heat lost by metal = heat gained by water
-m₁C₁ΔT₁ = m₂C₂ΔT₂
-(0.45 kg) C₁ (21°C − 80°C) = (0.70 kg) (4200 J/kg/°C) (21°C − 15°C)
C₁ = 660 J/kg/°C
Explanation:
It is based upon the fact that " The light travels faster then sound." As the speed of light is faster then the speed of sound, light travels 300,000 km per second and sound travels 1192 km per hour. That is why we observe the lightening first and hear the the sound of thunder later.
You can do this experiment by yourself. Once you see the lightening start counting the seconds until you hear the sound of thunder.Then divide the seconds by 5, you will find out how many miles away the lightening strike was.
Answer:
W = 2352 J
Explanation:
Given that:
- mass of the bucket, M = 10 kg
- velocity of pulling the bucket, v = 3

- height of the platform, h = 30 m
- rate of loss of water-mass, m =

Here, according to the given situation the bucket moves at the rate,

The mass varies with the time as,

Consider the time interval between t and t + ∆t. During this time the bucket moves a distance
∆x = 3∆t meters
So, during this interval change in work done,
∆W = m.g∆x
<u>For work calculation:</u>
![W=\int_{0}^{10} [(10-0.4t).g\times 3] dt](https://tex.z-dn.net/?f=W%3D%5Cint_%7B0%7D%5E%7B10%7D%20%5B%2810-0.4t%29.g%5Ctimes%203%5D%20dt)
![W= 3\times 9.8\times [10t-\frac{0.4t^{2}}{2}]^{10}_{0}](https://tex.z-dn.net/?f=W%3D%203%5Ctimes%209.8%5Ctimes%20%5B10t-%5Cfrac%7B0.4t%5E%7B2%7D%7D%7B2%7D%5D%5E%7B10%7D_%7B0%7D)

Since its a sphere, the top is seen first because its the tallest part if the ship. If the earth was flat, the whole ship would be seen.
Answer:
Cell Membrane
Explanation:
The cell membrane controls what goes in and out of a cell, and keeps it shape, much like a city limit.