Answer:
it helps us with our blood (Little)
the energy gained by proteins and carbohydrates differs from the energy gained by fats.
proteins and carbohydrates both give 4 kcal per gram
fats give 9 kcal per gram
mass of proteins - 2 g
energy given by proteins - 2 g x 4 kcal/g = 8 cal
mass of carbohydrates - 20 g
energy given by carbohydrates - 20 g x 4 kcal/g = 80 cal
mass of fat - 1 g
energy given by fat - 1 g x 9 kcal/g = 9 cal
total energy = 8 + 80 + 9 = 97 kcal
energy = 97 kcal
Answer:
A. 6atm
Explanation:
Using pressure law equation:
P1/T1 = P2/T2
Where;
P1 = initial pressure (atm)
T1 = initial temperature (K)
P2 = final pressure (atm)
T2 = final temperature (K)
According to this question;
P1 = 3 atm
P2 = ?
T1 = 120K
T2 = 240K
Using P1/T1 = P2/T2
3/120 = P2/240
Cross multiply
240 × 3 = P2 × 120
720 = 120P2
P2 = 720/120
P2 = 6atm
This is a problem involving heat transfer through radiation. The solution to this problem would be to use the formula for heat flux.
ΔQ/Δt = (1000 W/m²)∈Acosθ
A is the total surface area:
A = (1 m²) + 4(1.8 cm)(1m/100 cm)(√(1 m²))
A = 1.072 m²
ΔQ is the heat of melting ice.
ΔQ = mΔHfus
Let's find its mass knowing that the density of ice is 916.7 kg/m³.
ΔQ = (916.7 kg/m³)(1 m²)(1.8 cm)(1m/100 cm)(<span>333,550 J/kg)
</span>ΔQ = 5,503,780 J
5,503,780 J/Δt = (1000 W/m²)(0.05)(1.072 m²)(cos 33°)
<em>Δt = 122,434.691 s or 34 hours</em>
this shows that magnesium is higher in the reactivity series than lead.
I don't think there can be an ionic equation written because both components are in solid form and neither is in an aqeuos state.