Answer:
answer A
Explanation:
A) the quantity of usable energy declines with each transformation → True . Since the entropy increases , the amount of energy that can not be converted to useful energy increases and since the total amount of energy is conserved, the quantity of useful energy decreases.
B) energy can be neither created nor destroyed → False in the context of entropy , since the energy is conserved regardless of the changes in entropy (First law → conservation of energy vs second law → increase of entropy)
C) life should be impossible → False . Since the second law states that the entropy of the <u>universe </u>increases with time . Then the system (life) can experience a decrease in entropy at the expense of a larger increase in entropy of the surroundings ( so the net increase is positive)
D) it is not possible to observe an increase in molecular organisation → False . Same as C. A system can experience a decrease in entropy at the expense of a larger increase in entropy of the surroundings ( so the net increase is positive)
You have to use the equation PV=nRT.
P=pressure (in this case 1.89x10^3 kPa which equals 18.35677 atm)
1V=volume (in this case 685L)
n=moles (in this case the unknown)
R=gas constant (0.08206 (L atm)/(mol K))
T=temperature (in this case 621 K)
with the given information you can rewrite the ideal gas law equation as n=PV/RT.
n=(18.35677atm x 685L)/(0.08206atmL/molK x 621K)
n=246.8 moles
Answer:
The gas argon does not reach a state of vibrational excitation when infrared radiation strikes this gas.
Explanation:
The dry atmosphere is composed almost entirely of nitrogen (in a volumetric mixing ratio of 78.1%) and oxygen (20.9%), plus a series of oligogases such as argon (0.93%), helium and gases of greenhouse effect such as carbon dioxide (0.035%) and ozone. In addition, the atmosphere contains water vapor in very variable amounts (about 1%) and aerosols.
Greenhouse gases or greenhouse gases are the gaseous components of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at certain wavelengths of the infrared radiation spectrum emitted by the Earth's surface, the atmosphere and clouds . In the Earth's atmosphere, the main greenhouse gases (GHG) are water vapor (H2O), carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4) and ozone (O3 ). There is also in the atmosphere a series of greenhouse gases (GHG) created entirely by humans, such as halocarbons (compounds containing chlorine, bromine or fluorine and carbon, these compounds can act as potent greenhouse gases in the atmosphere and they are also one of the causes of the depletion of the ozone layer in the atmosphere) regulated by the Montreal Protocol. In addition to CO2, N2O and CH4, the Kyoto Protocol sets standards regarding sulfur hexafluoride (SF6), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs).
The difference between argon and greenhouse gases such as CO2 is that the individual atoms in the argon do not have free bonds and therefore do not vibrate. As a consequence, it does not reach a state of vibrational excitation when infrared radiation strikes this gas.
Answer:
+4
Explanation:
Oxidation number of neutral compound is 0
Oxidation number of hydrogen in methane is -1
C + (-1×4) = 0
C - 4 = 0
C = 4