Answer:
a) Maximum speed = 25.28 m/s
b) Total time = 27.27 s
c) Total distance traveled = 402.43 m
Explanation:
a) Maximum speed is obtained after the end of acceleration
v = u + at
v = 13.5 + 1.9 x 6.2 = 25.28 m/s
Maximum speed = 25.28 m/s
b) We have maximum speed = 25.28 m/s, then it decelerates 1.2 m/s² until it stops.
v = u + at
0 = 25.28 - 1.2 t
t = 21.07 s
Total time = 6.2 + 21.07 = 27.27 s
c) Distance traveled for the first 6.2 s
s = ut + 0.5 at²
s = 13.5 x 6.2 + 0.5 x 1.9 x 6.2² = 120.22 m
Distance traveled for the second 21.07 s
s = ut + 0.5 at²
s = 25.28 x 21.07 - 0.5 x 1.2 x 21.07² = 282.21 m
Total distance traveled = 120.22 + 282.21 = 402.43 m
Answer:
K/2
Explanation:
The law of conservation of mechanical energy states that the sum of the kinetic and potential energies is a constant at any point.
At maximum height, the glove has purely potential energy but at the bottom, it has purely kinetic energy.
The potential energy at the top = kinetic energy at the bottom. The potential energy is given by

At half height, this potential energy is

At this height, PE + KE = Constant = KE at bottom or PE at maximum height.


HI!
Conventional vehicles use gasoline or diesel to power an internal combustion engine. Hybrids also
use an internal combustion engine—and can be fueled like normal
cars—but have an electric motor and battery, and can be partially or
wholly powered by electricity. Also pollute less and save the drivers money.
Good Day.
The number of protons determines the element. Many elements also have many isotopes. Such as carbon-14 Carbon-12 and carbon-10.
Answer:
1. 12 V
2a. R₁ = 4 Ω
2b. V₁ = 4 V
3a. A = 1.5 A
3b. R₂ = 4 Ω
4. Diagram is not complete
Explanation:
1. Determination of V
Current (I) = 2 A
Resistor (R) = 6 Ω
Voltage (V) =?
V = IR
V = 2 × 6
V = 12 V
2. We'll begin by calculating the equivalent resistance. This can be obtained as follow:
Voltage (V) = 12 V
Current (I) = 1 A
Equivalent resistance (R) =?
V = IR
12 = 1 × R
R = 12 Ω
a. Determination of R₁
Equivalent resistance (R) = 12 Ω
Resistor 2 (R₂) = 8 Ω
Resistor 1 (R₁) =?
R = R₁ + R₂ (series arrangement)
12 = R₁ + 8
Collect like terms
12 – 8 =
4 = R₁
R₁ = 4 Ω
b. Determination of V₁
Current (I) = 1 A
Resistor 1 (R₁) = 4 Ω
Voltage 1 (V₁) =?
V₁ = IR₁
V₁ = 1 × 4
V₁ = 4 V
3a. Determination of the current.
Since the connections are in series arrangement, the same current will flow through each resistor. Thus, the ammeter reading can be obtained as follow:
Resistor 1 (R₁) = 4 Ω
Voltage 1 (V₁) = 6 V
Current (I) =?
V₁ = IR₁
6 = 4 × I
Divide both side by 4
I = 6 / 4
I = 1.5 A
Thus, the ammeter (A) reading is 1.5 A
b. Determination of R₂
We'll begin by calculating the voltage cross R₂. This can be obtained as follow:
Total voltage (V) = 12 V
Voltage 1 (V₁) = 6 V
Voltage 2 (V₂) =?
V = V₁ + V₂ (series arrangement)
12 = 6 + V₂
Collect like terms
12 – 6 = V₂
6 = V₂
V₂ = 6 V
Finally, we shall determine R₂. This can be obtained as follow:
Voltage 2 (V₂) = 6 V
Current (I) = 1.5 A
Resistor 2 (R₂) =?
V₂ = IR₂
6 = 1.5 × R₂
Divide both side by 1.5
R₂ = 6 / 1.5
R₂ = 4 Ω
4. The diagram is not complete