Answer:
or 0.07163 T into the page
Explanation:
m = Mass of particle = 10 g
a = Acceleration due to gravity = -9.8j m/s²
v = Velocity of particle = 19i km/s
q = Charge of particle = 72 μC
B = Magnetic field
Here the magnetic and gravitational forces on the particle are applied in the opposite direction so,




The magnetic field is 0.07163 T into the page
Wind and Waves are the 2 main forms of erosion on coastline cliffs
From reliable sources in the internet, the half-live of carbon-14 is given to be 5,730 years. In a span of 10,000 to 12,000 years, there are almost or little more than 2 half-lives. Thus, there should be
A(t) = A(0)(1/2)^t
where t is the number of half-lives, in this case 2. Thus, only about 1/4 of the original amount will be left.
Answer:
-1.43 m/s relative to the shore
Explanation:
Total momentum must be conserved before and after the run. Since they were both stationary before, their total speed, and momentum, is 0, so is the total momentum after the run off:
where
are the mass of the swimmer and raft, respectively.
are the velocities of the swimmer and the raft after the run, respectively. We can solve for
So the recoil velocity that the raft would have is -1.43 m/s after the swimmer runs off, relative to the shore
Solution :-
Given :
Distance 1 = 30 km
Distance 2 = 70 km
We know that speed = distance/time
and, Average speed = total distance/total time taken
When the train acquired a speed of 30 km/hr, the time taken = 30/30 = 1 hour
Average speed = 9distance 1 + distance 2)/(time 1 + time 2)
AS time 2 or t2 is time taken for the second part of the journey of 70 km
⇒ 40 = 100/(1 + t2)
⇒ 40 + 40t2 = 100
⇒ 40t2 = 100 - 40
⇒ 40t2 = 60
⇒ t2 = 60/40
⇒ t2 = 1.5
So, t2 or time taken to travel the second part of the journey is 1.5 hours.
Speed of the second part of the journey = distance 2/time 2
⇒ 70/1.5
⇒ 46.666 km/hr or 46.7 km/hr.
Hence the answer is = 46.666 km/hr or 46.7 km/hr.
Hope it helped u if yes mark me BRAINLIEST!
Tysm!
:)