Answer:
d. 37 °C
Explanation:
= mass of lump of metal = 250 g
= specific heat of lump of metal = 0.25 cal/g°C
= Initial temperature of lump of metal = 70 °C
= mass of water = 75 g
= specific heat of water = 1 cal/g°C
= Initial temperature of water = 20 °C
= mass of calorimeter = 500 g
= specific heat of calorimeter = 0.10 cal/g°C
= Initial temperature of calorimeter = 20 °C
= Final equilibrium temperature
Using conservation of heat
Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

Should be 1.4, I hope this helps you out
Answer:
When the same amount of heat is added to cold sand and cold water, the temperature change of sand will be higher because of its lower specific heat capacity.
What is specific heat capacity?
Specific heat capacity is the quantity
of heat required to raise a unit mass of
a substance by 1 kelvin.
Specific heat capacity of water and sand
{<em>refer to the above attachment}</em>
Δθ = Q/mc
Thus, for an equal mass of water and sand, when the same amount of heat is added to cold sand and cold water, the temperature change of sand will be higher because of its lower specific heat capacity.
Both are constants used in the definition of Forces (gravitational and electric,respectively)
Since those constants are proportional to the magnitude of the forces:
Having a small gravitational constant explains why there is no apparent force of attraction with objects of considerable low mass (they would need to have great value of mass for the equation to give an apreciable force)
Electrical interactions are usually strong, and thus require an appropiate constant to depict the phenomenon. We deal in this case with charges really small, but the forces are in different order of magnitude.