Answer:
Radium is used to produce Radon
Explanation:
Radon is a gas used to treat cancer (certain types).
An isotope is the vary of neutrons in an element, causing its atomic mass to change. While an ion is a charged atom that bonds to be stable.
1. a. FeS + 2HCl --> FeCl2 + H2S
b. This is a double- replacement reaction. (The elements "switch partners".)
2. a.2Na + F2 --> 2NaF
b. This is a composition/synthesis reaction. (The two reactants are combining or synthesizing to make one product.)
3. a. 2HgO --> 2Hg + O2
b. This is a decomposition reaction. (The single reactant is breaking down or "decomposing" into multiple reactants.)
4. Hydrogen gas reacts with oxygen gas to create water in a composition/synthesis reaction.
I hope these answers will help you! If you need any explanation, ask and hopefully I can get back to you. ;)
Answer:
60 V
Explanation:
From;
Vs/Vp = Ns/Np
Where;
Vs = voltage in the secondary coil = 6V
Vp = voltage in the primary coil= ??
Ns = number of turns in the secondary coil = 9
Np= number of turns in the primary coil = 90
6/Vp = 9/90
Vp= 90 * 6/9
Vp= 60 V
Answer:
The vapor pressure of benzaldehyde at 61.5 °C is 70691.73 torr.
Explanation:
- To solve this problem, we use Clausius Clapeyron equation: ln(P₁/P₂) = (ΔHvap / R) (1/T₁ - 1/T₂).
- The first case: P₁ = 1 atm = 760 torr and T₁ = 451.0 K.
- The second case: P₂ = <em>??? needed to be calculated</em> and T₂ = 61.5 °C = 334.5 K.
- ΔHvap = 48.8 KJ/mole = 48.8 x 10³ J/mole and R = 8.314 J/mole.K.
- Now, ln(P₁/P₂) = (ΔHvap / R) (1/T₁ - 1/T₂)
- ln(760 torr /P₂) = (48.8 x 10³ J/mole / 8.314 J/mole.K) (1/451 K - 1/334.5 K)
- ln(760 torr /P₂) = (5869.62) (-7.722 x 10⁻⁴) = -4.53.
- (760 torr /P₂) = 0.01075
- Then, P₂ = (760 torr) / (0.01075) = 70691.73 torr.
So, The vapor pressure of benzaldehyde at 61.5 °C is 70691.73 torr.