Answer:
The 2 ml and 2.0 ml is the same thing.
Answer:
3. 3.45×10¯¹⁸ J.
4. 1.25×10¹⁵ Hz.
Explanation:
3. Determination of the energy of the photon.
Frequency (v) = 5.2×10¹⁵ Hz
Planck's constant (h) = 6.626×10¯³⁴ Js
Energy (E) =?
The energy of the photon can be obtained by using the following formula:
E = hv
E = 6.626×10¯³⁴ × 5.2×10¹⁵
E = 3.45×10¯¹⁸ J
Thus, the energy of the photon is 3.45×10¯¹⁸ J
4. Determination of the frequency of the radiation.
Wavelength (λ) = 2.4×10¯⁵ cm
Velocity (c) = 3×10⁸ m/s
Frequency (v) =?
Next, we shall convert 2.4×10¯⁵ cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
2.4×10¯⁵ cm = 2.4×10¯⁵ cm × 1 m /100 cm
2.4×10¯⁵ cm = 2.4×10¯⁷ m
Thus, 2.4×10¯⁵ cm is equivalent to 2.4×10¯⁷ m
Finally, we shall determine the frequency of the radiation by using the following formula as illustrated below:
Wavelength (λ) = 2.4×10¯⁷ m
Velocity (c) = 3×10⁸ m/s
Frequency (v) =?
v = c / λ
v = 3×10⁸ / 2.4×10¯⁷
v = 1.25×10¹⁵ Hz
Thus, the frequency of the radiation is 1.25×10¹⁵ Hz.
Altitude. Rainfall, a hot dry day, and a hurricane are all examples of weather, not climate.
It will take 5.2 years to decay.
The half life of cobalt-60 is 5.2 years. The half life is the time taken for the mass of the substance to decrease by a half.
here, the amount of remaining substance is 50%,
so, 
n. log (0.5) = log (0.5)
n = 1
So it would take 1 half lives to decay this much, which is 1 x 5.2 which is 5.2 years.
what do you mean by radioactive decay ?
The process through which an unstable atomic nucleus loses energy via radiation is known as radioactive decay, also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration. A material that has unstable nuclei is considered as radioactive.
Learn more about decay here:-
brainly.com/question/13853996
#SPJ1
The question requires us to explain the differences in radii of neutral atoms, cations and anions.
To answer this question, we need to keep in mind that a neutral atom presents the same number of protons (positive particles) and electrons (negative particles). Another important information is that the protons are located in the nucleus of the atom, while the electrons are around the nucleus. Also, there is an electrostatic force between protons and electrons, which means that they the protons tend to attract the electrons to the nucleus.
While a neutral atom presents the same number of protons and electrons, a cation is an ion with positive charge, which means it has lost one or more electrons. In a cation, the balance between protons and electrons doesn't exist anymore: now, there is more positive than negative charge (more protons than electrons), and the overall attractive force that the protons have for the electrons is increased. As a result, the electrons stay closer to the nucleus and the radius of a cation is smaller than the neutral atom from which it was derived.
On the other side, anions present negative charge, which means they have received electrons. Similarly to cations, the balance between protons and electrons doesn't exist anymore, but in this case, there are more electrons than protons. In an anion, the overall attractive force that the protons have for the electrons is decreased. As a result, the electrons are "more free" to move and, as they are not so attracted to the nucleus, they tend to stay farther from the positive nucleus compared to the neutral atom - because of this, the radius of an anion is larger than the neutral atom from which it was derived.